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Research in my lab

• Goal
– Advance biological knowledge on genomics in brain diseases

• Approach
– Interpretable computational approaches; e.g., machine learning

https://www.waisman.wisc.edu/2020/01/07/new-researcher-uses-machine-learning-to-decode-genomic-information/
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Your genome is your genetic code book

https://goo.gl/images/vMaz4T

Human
• 46 chromosomes
• ~ 20,000 – 25,000 genes
• ~ Millions elements
• 4 unique bases (A, T, C, G), ~3 billion in total

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
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How to read sentences/genes for understanding book/genome?

https://goo.gl/images/vMaz4T

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases
“On most days, I enter the Capitol
through the basement. A small 
subway train carries me from the Hart 
Building, where …” 

• Key words

• Non-key words Gene 1

Gene 2

• Coding elements 
(Exon, 2%)

- Become proteins 
carrying out functions

• Non-coding 
elements (98%)
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Grammar for book is clear but not for genome

Functions
Sentence 2

Sentence 1

Sentence 3

• Key words
• Non-key words

Grammar

Book Genome
Chapters Chromosomes

Sentences Genes

Words Elements

Letters Bases

Gene 2

Gene 1

Gene 3

Gene 
regulation

• Coding elements
• Non-coding 

elements

• Set up “rules” in translating 
genomic codes to functions

• Broken rules -> 
Abnormal functions

• Unclear
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Genes to Functions

• Genes and elements • Connections (“rules”)

• Functions
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Low sequencing cost enables reading our whole genome
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Single Nucleotide Polymorphisms (SNPs) normally 
happen ~1% on individual human genome.

7
After reading our genomes, we find differences: 
DNA mutations (i.e., genomic variants)

Most SNPs are harmless but some break “rules”
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Genotype to Phenotype
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Example: Genome-Wide Association Study (GWAS) identifies 
disease associated noncoding variants

P=5*10-8

Associated non-coding SNPs

Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nature (2014)

36,989 schizophrenia cases and 113,075 controls 
in Psychiatric Genomics Consortium 

However, association can’t tell “rules” in genome
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Genotype to Phenotype is a complex process

Disease

Health

Non-coding
Non

-cod
ing

Codi
ng

We need to understand 
rules on gene regulation!
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Machine learning deciphers “rules” for disease prediction

Machine LearningBig genomic data

Genetic rules

Disease diagnosis

…

Machine Learning approaches
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Big genomic data enable learning rules on gene regulation

Human 20,000 genes 
(2% genome)

Other genomic elements: non-coding RNAs, gene regulatory 
regions, repeats, and so on… (98% genome)

Cell lines

Tissues

Cancers

Development

Psychiatric 
disorders

Neurodegene
rative 
diseases

(13 developmental stages,  
16 brain regions)

Genotype-Tissue Expression (GTEx)
(> 40 tissues)

ENCODE (Encyclopedia of DNA Elements) Consortium
(> 300 cell types)

The Cancer Genome Atlas (TCGA)
(> 40 cancer types)

PsychENCODE Consortium 
(~2,000 tissues incl. health, Schizophrenia, Autism, Bipolar)

Religious Orders Study 
and Memory and Aging 
Project (ROSMAP)

International Parkinson's 
Disease Genomics 
Consortium (IPDGC)
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Example: PsychENCODE (PEC) consortium

Wang, et al., Science, 2018

Big genome data of human brain for the first time!
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Identifying gene regulatory network in the human brain 
using PsychENCODE data

PsychENCODE data

Gene regulatory network -
“rules” in human brain 
genome

Wang, et al., Science, 2018

𝐶*= 𝑎𝑟𝑔𝑚𝑖𝑛!(
)
𝑌 − 𝑋𝐶 " +

𝑎 𝐶 " + 𝑏 𝐶 #$

Elastic net model
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Linking novel disease genes using learned “rules”

Gene regulatory network -
“rules” in human brain 
genome

Wang, et al., Science, 2018

GWAS data

321 
schizophrenia 

genes 

BOLA1
SV2A
KAT5
GFOD2
FXR1
SF3B4
INPP4B
PRIM1
RNASEH2C
AP5B1
OVOL1
CFL1
SNX32
MTMR11
MUS81
MAD1L1
EFEMP2

…
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Improving brain disease prediction by applying learned 
“rules”

Gene regulatory network -
“rules” in human brain 
genome

Wang, et al., Science, 2018

Machine Learning learns 
”black box”

Schizophrenia 
diagnosis 
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…
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Deep learning model
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Disease-
associated 
genomic 
variants

How do 
variants 
function?

Neurobiological framework for interpretation of individual disease-associated variants. 
Gandal et al., Nature Neuroscience, 2016

The human genome is more complex than a book. 
Many unknown “rules” (i.e., biological mechanisms)!
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Multi-view learning application in functional genomics

• A multi-view learning framework for understanding multi-omics
Nguyen, Wang, PLoS Computational Biology, 2020

• Interpretable deep neural network model prioritizes disease variants 
and genes via drop-connect 

Nguyen, Jin, Wang, Bioinformatics, 2020
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Select ongoing applications

ECMarker
for predicting cancer stages      

Early

Late

A. Gene biomarkers and 
regulatory networks

C. Prediction of clinical outcomes 
(e.g., survival rates for early patients)

B. Associated pathways 
and functions

Group1

Group2

Pathway Pathway Pathway

LateEarly

Early-Stage
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D. Drug discovery for early cancer
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• Genomic biomarkers in early disease 
stages (e.g., cancer, neurodegeneration)

Jin, Nguyen, Talos, Wang, 2020

Hi-C

Enhancers
Topologically Associating 

Domain (TAD)

Gene

Potential Enhancer-Promoter 
(E-P) interaction in TAD

Transcription Factor 
Binding Sites (TFBSs)

Imputed TF-target linkage by Elastic Net

Imputed E-P interaction via TF-target linkages

!*= "#$%&'(( * − ,! - +
" ! - + / ! 01)
TF expression (X) to predict target 
gene expression (Y) 
using Elastic net regression

C*1C*2
C*3

3. Predicting TF-target via Elastic net

4. Imputed gene regulatory network

TFBS on promoter

TFBS on enhancer

Potential E-P interaction in TAD

TF
Enhancer
Target gene

• Disease & Cell-type specific genes and 
regulatory networks

Ying, Rehani, Liu, Roussos, Wang, in revision

AGEBPDSCZ

Tissue data 
(optional)

pathways, 
circuits

…NPS

Single cell expression
Cell type 1, 2, …

Cell 
fraction

AGEBPDSCZ …

AD, PD, LBD, CTRL

Genotype

AGEBPDSCZ …

Neuroimage

Epigenetic
Cell type 1, 2, …,

• Deep learning for deep phenotypes 
(e.g., symptom, imaging, cross-disease)
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Thank you!
Ph.D. positions available

Please contact daifeng.wang@wisc.edu
Website: https://daifengwanglab.org/

mailto:daifeng.wang@wisc.edu
https://daifengwanglab.org/

