
slide 1

CS540
Uninformed Search

Anthony Gitter

gitter@biostat.wisc.edu

University of Wisconsin-Madison

Slides created by Xiaojin Zhu (UW-Madison),

lightly edited by Anthony Gitter

slide 2

Main messages

• Many AI problems can be formulated as search.

• Iterative deepening is good when you don’t know

much.

slide 3

slide 4

http://xkcd.com/1134/

slide 5

The search problem

• State space S : all valid configurations

• Initial states (nodes) I={(CSDF,)}  S

 Where’s the boat?

• Goal states G={(,CSDF)}  S

• Successor function succs(s) S : states reachable in

one step (one arc) from state s

 succs((CSDF,)) = {(CD, SF)}

 succs((CDF,S)) = {(CD,FS), (D,CFS), (C, DFS)}

• Cost(s,s’)=1 for all arcs. (weighted later)

• The search problem: find a solution path from a state

in I to a state in G.

 Optionally minimize the cost of the solution.

C S D F

slide 6

Search examples

• 8-puzzle

• States = configurations

• Successor function = up to 4 kinds of movement

• Cost = 1 for each move

slide 7

Search examples

• Water jugs: how to get 1?

• Goal? (How many goal states?)

• Successor function: fill up (from tap or other jug),

empty (to ground or other jug)

7 5

slide 8

Search examples

• Route finding (State? Successors? Cost weighted)

slide 9

8-queens

• State: complete configuration vs. column-by-column

• Column-by-column produces tree instead of graph

slide 10

A directed graph in state space

• In general there will be many generated, but un-

expanded states at any given time

• One has to choose which one to expand next

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

C S D F

start goal

slide 11

Different search strategies

• The generated, but not yet expanded states form the
fringe (OPEN).

• The essential difference is which one to expand first.

• Deep or shallow?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

start goal

slide 12

Uninformed search on trees

• Uninformed means we only know:

– The goal test

– The succs() function

• But not which non-goal states are better: that would

be informed search (next topic).

• For now, we also assume succs() graph is a tree.

 Won’t encounter repeated states.

 We will relax it later.

• Search strategies: BFS, UCS, DFS, IDS, BIBFS

• Differ by what un-expanded nodes to expand

slide 13

Breadth-first search (BFS)

Expand the shallowest node first

• Examine states one step away from the initial states

• Examine states two steps away from the initial states

• and so on…

ripple

goal

slide 14

Breadth-first search (BFS)

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

slide 15

Breadth-first search (BFS)

queue (fringe, OPEN)

 [A] 

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

slide 16

Breadth-first search (BFS)

queue (fringe, OPEN)

 [CB]  A

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

slide 17

Breadth-first search (BFS)

queue (fringe, OPEN)

 [EDC]  B

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

slide 18

Breadth-first search (BFS)

queue (fringe, OPEN)

[GFED]  C

If G is a goal, we've seen it, but

we don't stop!

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Initial state: A

Goal state: G

Search tree

slide 19

Breadth-first search (BFS)

queue

[] G

... until much later we pop G.

We need back pointers to

recover the solution path.

Looking foolish?

Indeed. But let’s be

consistent…

Use a queue (First-in First-out)

1. en_queue(Initial states)

2. While (queue not empty)

3. s = de_queue()

4. if (s==goal) success!

5. T = succs(s)

6. en_queue(T)

7. endWhile

Search tree

slide 20

Performance of BFS

• Assume:

 the graph may be infinite.

 Goal(s) exists and is only finite steps away.

• Will BFS find at least one goal?

• Will BFS find the least cost goal?

• Time complexity?

 # states generated

 Goal d edges away

 Branching factor b

• Space complexity?

 # states stored goal

slide 21

Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will

find a goal.

• Optimality: yes if edges cost 1 (more generally

positive non-decreasing in depth), no otherwise.

• Time complexity (worst case): goal is the last node at

radius d.

 Have to generate all nodes at radius d.

 b + b2 + … + bd ~ O(bd)

• Space complexity (bad)

 Back pointers for all generated nodes O(bd)

 The queue / fringe (smaller, but still O(bd))

slide 22

What’s in the fringe (queue) for BFS?

• Convince yourself this is O(bd)

goal

slide 23

Performance of search algorithms on trees

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. Edge cost constant, or positive non-decreasing in depth

b: branching factor (assume finite) d: goal depth

slide 24

Performance of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will

find a goal.

• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at

radius d.

 Have to generate all nodes at radius d.

 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)

 Back points for all generated nodes O(bd)

 The queue (smaller, but still O(bd))

Solution:
Uniform-cost

search

slide 25

Uniform-cost search

• Find the least-cost goal

• Each node has a path cost from start (= sum of edge

costs along the path).

• Expand the least cost node first.

• Use a priority queue instead of a normal queue

 Always take out the least cost item

 Remember heap? time O(log(#items in heap))

That’s it*

* Complications on graphs (instead of trees). Later.

slide 26

Uniform-cost search (UCS)

• Complete and optimal (if edge costs   > 0)

• Time and space: can be much worse than BFS

 Let C* be the cost of the least-cost goal

 O(bC*/ ), possibly C*/  >> d

all edges 
except this one

goal
C*

slide 27

Performance of search algorithms on trees

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth

slide 28

General State-Space Search Algorithm

function general-search(problem, QUEUEING-FUNCTION)

;; problem describes the start state, operators, goal test, and

;; operator costs

;; queueing-function is a comparator function that ranks two states

;; general-search returns either a goal node or "failure"

nodes = MAKE-QUEUE(MAKE-NODE(problem.INITIAL-STATE))

loop

if EMPTY(nodes) then return "failure"

node = REMOVE-FRONT(nodes)

if problem.GOAL-TEST(node.STATE) succeeds then return node

nodes = QUEUEING-FUNCTION(nodes, EXPAND(node,

problem.OPERATORS))

;; succ(s)=EXPAND(s, OPERATORS)

;; Note: The goal test is NOT done when nodes are generated

;; Note: This algorithm does not detect loops

end

slide 29

Recall the bad space complexity of BFS

Four measures of search algorithms:

• Completeness (not finding all goals): yes, BFS will

find a goal.

• Optimality: yes if edges cost 1 (more generally

positive non-decreasing with depth), no otherwise.

• Time complexity (worst case): goal is the last node at

radius d.

 Have to generate all nodes at radius d.

 b + b2 + … + bd ~ O(bd)

• Space complexity (bad, Figure 3.11)

 Back points for all generated nodes O(bd)

 The queue (smaller, but still O(bd))

Solution:
Depth-first

search

Solution:
Uniform-cost

search

slide 30

Depth-first search

Expand the deepest node first

1. Select a direction, go deep to the end

2. Slightly change the end

3. Slightly change the end some more…

fan

goal

slide 31

Depth-first search (DFS)

Use a stack (First-in Last-out)

1. push(Initial states)

2. While (stack not empty)

3. s = pop()

4. if (s==goal) success!

5. T = succs(s)

6. push(T)

7. endWhile stack (fringe)

[] 

slide 32

What’s in the fringe for DFS?

• m = maximum depth of graph from start

• m(b-1) ~ O(mb)

(Space complexity)

• “backtracking search” even less space

 generate siblings (if applicable)

goal c.f. BFS O(bd)

slide 33

What’s wrong with DFS?

• Infinite tree: may not find goal (incomplete)

• May not be optimal

• Finite tree: may visit almost all nodes, time

complexity O(bm)

goal

goal

c.f. BFS O(bd)

slide 34

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 35

How about this?

1. DFS, but stop if path length > 1.

2. If goal not found, repeat DFS, stop if path length > 2.

3. And so on…

fan within ripple

goal

goal

slide 36

Iterative deepening

• Search proceeds like BFS, but fringe is like DFS

 Complete, optimal like BFS

 Small space complexity like DFS

• A huge waste?

 Each deepening repeats DFS from the beginning

 No! db+(d-1)b2+(d-2)b3+…+bd ~ O(bd)

 Time complexity like BFS

• Preferred uninformed search method

slide 37

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 38

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 39

Bidirectional search

start

• Breadth-first search from both start and goal

• Fringes meet

• Generates O(bd/2) instead of O(bd) nodes

goal

slide 40

Bidirectional search

start goal

• But

 The fringes are O(bd/2)

 How do you start from the 8-queens goals?

slide 41

Performance of search algorithms on trees

O(bm)O(bm)NN
Depth-first
search

O(bC*/)O(bC*/)YY
Uniform-cost
search2

O(bd)O(bd)Y, if 1Y
Breadth-first
search

O(bd)O(bd)Y, if 1Y
Iterative
deepening

O(bd/2)O(bd/2)Y, if 1Y
Bidirectional
search3

spacetimeoptimalComplete

1. edge cost constant, or positive non-decreasing in depth

2. edge costs   > 0. C* is the best goal path cost.

3. both directions BFS; not always feasible.

b: branching factor (assume finite) d: goal depth m: graph depth

slide 42

If state space graph is not a tree

• The problem: repeated states

• Ignore the danger of repeated states: wasteful (BFS)

or impossible (DFS). Can you see why?

• How to prevent it?

CSDF, CD,SF CDF, S

D, CFS

C, DSF

DFS, C

CSF, D

S, CFD SF, CD , CSDF

slide 43

If state space graph is not a tree

• We have to remember already-expanded states
(CLOSED).

• When we take out a state from the fringe (OPEN),
check whether it is in CLOSED (already expanded).

 If yes, throw it away.

 If no, expand it (add successors to OPEN), and
move it to CLOSED.

slide 44

If state space graph is not a tree

• BFS:

 Still O(bd) space complexity, not worse

• DFS:

 Known as Memorizing DFS (MEMDFS)

• Space and time now O(min(N, bm)) – much worse!

• N: number of states in problem

• m: length of longest cycle-free path from start to

anywhere

 Alternative: Path Check DFS (PCDFS): remember

only expanded states on current path (from start to

the current node)

• Space O(m)

• Time O(bm)

slide 45

Path Checking DFS

1.Maintain a “prefix” path from root to current node,

initially empty.

2.Pop a state s. If s in prefix, skip to next pop

3.Goal-checking s.

4.s comes with a backpointer to its parent p. The prefix

should contain p somewhere as in initial, ..., p, ...

5.Remove everything after p and put s there, so prefix is

now initial, ..., p, s.

6.When you generate a successor t of s, check if t is in

prefix or stack. If no, push t to the stack; if yes, do not

push it.

slide 46

Example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

slide 47

Nodes expanded by:

• Depth-First Search: S A D E G

Solution found: S A G

• Breadth-First Search: S A B C D E G

Solution found: S A G

• Uniform-Cost Search: S A D B C E G

Solution found: S B G (This is the only uninformed

search that worries about costs.)

• Iterative-Deepening Search: S A B C S A D E G

Solution found: S A G

slide 48

Depth-First Search

slide 49

Breadth-First Search

slide 50

Uniform-Cost Search

slide 51

What you should know

• Problem solving as search: state, successors, goal test

• Uninformed search

 Breadth-first search

• Uniform-cost search

 Depth-first search

 Iterative deepening

 Bidirectional search

• Can you unify them (except bidirectional) using the

same algorithm, with different priority functions?

• Performance measures

 Completeness, optimality, time complexity, space

complexity

