Statistics and Natural Language Processing

Daifeng Wang

daifeng.wang@wisc.edu University of Wisconsin, Madison

Based on slides from Xiaojin Zhu and Yingyu Liang (<u>http://pages.cs.wisc.edu/~jerryzhu/cs540.html</u>), modified by Daifeng Wang

Outline

Probability

- Independence
- Conditional independence
- Expectation
- Natural Language Processing
 - Preprocessing
 - Statistics
 - Language models

Independence

- Two events A, B are independent, if (the following are equivalent)
 - P(A, B) = P(A) * P(B)
 - P(A | B) = P(A)
 - P(B | A) = P(B)
- For a 4-sided die, let
 - A=outcome is small
 - B=outcome is even
 - Are A and B independent?
- How about a 6-sided die?

Independence

- Independence is a domain knowledge
- If A, B are independent, the joint probability table between A, B is simple:
 - it has k² cells, but only 2k-2 parameters. This is good news – more on this later...
- Example: P(burglary)=0.001, P(earthquake)=0.002. Let's say they are independent. The full joint probability table=?

Conditional independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary don't talk to each other
- JohnCall independent of MaryCall?
 - No If John called, likely the alarm went off, which increases the probability of Mary calling
 - $P(MaryCall | JohnCall) \neq P(MaryCall)$

Conditional independence

- If we know the status of the alarm, JohnCall won't affect Mary at all
 P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- In general A, B are conditionally independent given C
 - if P(A | B, C) = P(A | C), or
 - P(B | A, C) = P(B | C), or
 - P(A, B | C) = P(A | C) * P(B | C)

Independence example #1

<i>x</i> , <i>y</i>	P(X=x, Y=y)	<i>x</i>	P(X=x)
sun, on-time	0.20	sun	0.3
rain, on-time	0.20	rain	0.5
snow, on-time	0.05	snow	0.2
sun, late	0.10	${\mathcal Y}$	P(Y=y)
rain, late	0.30	on-time	0.45
snow, late	0.15	late	0.55

Are X and Y independent here? NO.

Independence example #2

<i>x</i> , <i>y</i>	P(X=x, Y=y)	<i>x</i>	P(X=x)
sun, fly-United	0.27	sun	0.3
rain, fly-United	0.45	rain	0.5
snow, fly-United	0.18	snow	0.2
sun, fly-Delta	0.03	V	P(Y = y)
rain, fly-Delta	0.05	fly-United	0.9
snow, fly-Delta	0.02	fly-Delta	0.1

Are X and Y independent here? YES.

Expected values

 The expected value of a random variable that takes on numerical values is defined as:

$$\mathbf{E}[X] = \sum_{x} x P(x)$$

This is the same thing as the *mean*

 We can also talk about the expected value of a function of a random variable

$$\mathbf{E}[g(X)] = \sum_{x} g(x) P(x)$$

Expected value examples

Shoesize

 $\mathbf{E}[Shoesize]$

 $= 5 \times P(Shoesize = 5) + \dots + 14 \times P(Shoesize = 14)$

 Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

What is the expectation of the gain?

Expected value examples

Shoesize

E[Shoesize]

 $= 5 \times P(Shoesize = 5) + \dots + 14 \times P(Shoesize = 14)$

Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100. The probability that a particular ticket is the winning ticket is 0.001.

 $\mathbf{E}[gain(Lottery)]$

- = gain(winning)P(winning) + gain(losing)P(losing)
- $= (\$100 \$1) \times 0.001 \$1 \times 0.999$
- = -\$0.9

Summary

- Axioms of probability and related properties
- Joint/marginal/conditional probabilities
- Bayes' rule for reasoning
- Independence and conditional independence
- Expectation

Natural language Processing (NLP)

- The processing of the human languages by computers
- One of the oldest AI tasks
- One of the most important AI tasks
- One of the hottest AI tasks nowadays

Difficulty

- Difficulty 1: ambiguous, typically no formal description
- Example: "We saw her duck."

How many different meanings?

Difficulty

- Difficulty 1: ambiguous, typically no formal description
- Example: "We saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Difficulty

- Difficulty 2: computers do not have human concepts
- Example: "She like little animals. For example, yesterday we saw her duck."
- 1. We looked at a duck that belonged to her.
- 2. We looked at her quickly squat down to avoid something.
- 3. We use a saw to cut her duck.

Preprocess Zipf's Law

Preprocess

- Corpus: often a set of text documents
- Tokenization or text normalization: turn corpus into sequence(s) of tokens
- Remove unwanted stuff: HTML tags, encoding tags
 Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.

Preprocess

Tokenization or text normalization: turn data into sequence(s) of tokens

 Remove unwanted stuff: HTML tags, encoding tags
 Determine word boundaries: usually white space and punctuations

- Sometimes can be tricky, like Ph.D.
- **3.**Remove stopwords: the, of, a, with, ...

Preprocess

- Tokenization or text normalization: turn data into sequence(s) of tokens
- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- **3.** Remove stopwords: the, of, a, with, ...
- **4.** Case folding: lower-case all characters.
 - Sometimes can be tricky, like US and us
- 5. Stemming/Lemmatization (optional): looks, looked, looking \rightarrow look

Vocabulary

Given the preprocessed text

- Word token: occurrences of a word
- Word type: unique word as a dictionary entry (i.e., unique tokens)
- Vocabulary: the set of word types
 - Often 10k to 1 million on different corpora
 - Often remove too rare words

Zipf's Law

• Word count *f*, word rank *r*

• Zipf's law: $f * r \approx \text{constant}$

Word	Count f	rank \boldsymbol{r}	fr
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
\mathbf{but}	410	20	8400
be	294	30	8820
\mathbf{there}	222	40	8880
one	172	50	8600
two	104	100	10400
turned	51	200	10200
comes	16	500	8000
family	8	1000	8000
brushed	4	2000	8000
Could	2	4000	8000
Applausive	1	8000	8000

Zipf's law on the corpus *Tom Sawyer*

Bag-of-Words tf-idf

TEXT: BAG-OF-WORDS REPRESENTATION

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

- Let *m* denote the size of the vocabulary
- Given a document d, let c(w, d) denote the #occurrence of w in d
- Bag-of-Words representation of the document $v_d = [c(w_1, d), c(w_2, d), ..., c(w_m, d)]/Z_d$
- Often $Z_d = \sum_w c(w, d)$

Example

- Preprocessed text: this is a good sentence this is another good sentence
- BoW representation:
 [c('a',d)/Z_d,c('is',d)/Z_d,...,c('example',d)/Z_d]
- What is Z_d ?
- What is $c(a', d)/Z_d$?
- What is $c('example', d)/Z_d$?

tf-idf

• tf: normalized term frequency

$$tf_w = \frac{c(w,d)}{\max_v c(v,d)}$$

- idf: inverse document frequency $idf_w = \log \frac{\text{total #doucments}}{\text{#documents containing } w}$
- tf-idf: $tf-idf_w = tf_w * idf_w$
- Representation of the document

$$v_d = [tf - idf_{W_1}, tf - idf_{W_2}, \dots, tf - idf_{W_m}]$$

Cosine Similarity

How to measure similarities between pieces of text?

- Given the document vectors, can use any similarity notion on vectors
- Commonly used in NLP: cosine of the angle between the two vectors

$$sim(x, y) = \frac{x^{\top} y}{\sqrt{x^{\top} x} \sqrt{y^{\top} y}}$$

Statistical language model

N-gram

Smoothing

slide 28

TEXT: STATISTICAL LANGUAGE MODEL

Probabilistic view

- Use probabilistic distribution to model the language
- Dates back to Shannon (information theory; bits in the message)

Statistical language model

- Language model: probability distribution over sequences of tokens
- Typically, tokens are words, and distribution is discrete
- Tokens can also be characters or even bytes
- Sentence: "the quick brown fox jumps over the lazy dog"

Tokens: $x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \quad x_8 \quad x_9$

Statistical language model

 For simplification, consider fixed length sequence of tokens (sentence)

 $(x_1, x_2, x_3, \dots, x_{\tau-1}, x_{\tau})$

Probabilistic model:

P [$x_1, x_2, x_3, ..., x_{\tau-1}, x_{\tau}$]

Unigram model

 Unigram model: define the probability of the sequence as the product of the probabilities of the tokens in the sequence

$$P[x_1, x_2, ..., x_{\tau}] = \prod_{t=1}^{\tau} P[x_t]$$

Independence!

A simple unigram example

Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the] \ \hat{P}[dog] \ \hat{P}[ran] \ \hat{P}[away]$

• How to estimate $\hat{P}[the]$ on the training corpus?

A simple unigram example

Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the] \ \hat{P}[dog] \ \hat{P}[ran] \ \hat{P}[away]$

• How to estimate $\hat{P}[the]$ on the training corpus?

Word	Count f
the	3332
and	2972
a	1775
he	877
but	410
be	294
there	222
one	172

n-gram model

- *n*-gram: sequence of *n* tokens
- n-gram model: define the conditional probability of the n-th token given the preceding n - 1 tokens

$$P[x_1, x_2, \dots, x_{\tau}] = P[x_1, \dots, x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, \dots, x_{t-1}]$$

n-gram model

- *n*-gram: sequence of *n* tokens
- n-gram model: define the conditional probability of the n-th token given the preceding n - 1 tokens

$$P[x_1, x_2, \dots, x_{\tau}] = P[x_1, \dots, x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, \dots, x_{t-1}]$$

Markovian assumptions

Typical *n*-gram model

- n = 1: unigram
- n = 2: bigram
- n = 3: trigram

Training *n***-gram model**

 Straightforward counting: counting the co-occurrence of the grams

For all grams $(x_{t-n+1}, ..., x_{t-1}, x_t)$ 1. count and estimate $\widehat{P}[x_{t-n+1}, ..., x_{t-1}, x_t]$ 2. count and estimate $\widehat{P}[x_{t-n+1}, ..., x_{t-1}]$ 3. compute

$$\widehat{P}[x_t | x_{t-n+1}, \dots, x_{t-1}] = \frac{\widehat{P}[x_{t-n+1}, \dots, x_{t-1}, x_t]}{\widehat{P}[x_{t-n+1}, \dots, x_{t-1}]}$$

A simple trigram example

Sentence: "the dog ran away"

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \ \hat{P}[away|dog \ ran]$

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \frac{\hat{P}[dog \ ran \ away]}{\hat{P}[dog \ ran]}$

Drawback

- Sparsity issue: $\widehat{P}[...]$ most likely to be 0
- Bad case: "dog ran away" never appear in the training corpus, so P[dog ran away] = 0
- Even worse: "dog ran" never appear in the training corpus, so $\widehat{P}[dog ran] = 0$

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams
 pseudocount[dog] = actualcount[dog] + 1

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams
 pseudocount[dog] = actualcount[dog] + 1

$$\widehat{P}[dog] = \frac{\text{pseudocount}[dog]}{\text{pseudo length of the corpus}} = \frac{\text{pseudocount}[dog]}{\text{actual length of the corpus}} + |V|$$

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all n-grams

pseudocount[dog ran away] = actualcount
[dog ran away] + 1
pseudocount[dog ran] = ?

- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all n-grams

pseudocount[dog ran away] = actualcount [dog ran away] + 1 pseudocount[dog ran] \approx actualcount[dog ran] + |V| $\hat{P}[away|dog ran] = \frac{pseudocount[dog ran away]}{pseudocount[dog ran]}$ since #bigrams \approx #trigrams on the corpus

Example

- Preprocessed text: this is a good sentence this is another good sentence
- How many unigrams?
- How many bigrams?
- Estimate P[is|this] without using Laplace smoothing
- Estimate P
 [is|this] using Laplace smoothing (|V| = 10000)

- Basic method: adding non-zero probability mass to zero entries
 - Example: Laplace smoothing
- Back-off methods: restore to lower order statistics
 - Example: if P[away|dog ran] does not work, use P[away|ran] as replacement
- Mixture methods: use a linear combination of $\widehat{P}[away|ran]$ and $\widehat{P}[away|dog ran]$

Another drawback

- High dimesion: # of grams too large
- Vocabulary size: about 10k=2^14
- #trigram: about 2^42

Rectify: clustering

- Class-based language models: cluster tokens into classes; replace each token with its class
- Significantly reduces the vocabulary size; also address sparsity issue
- Combinations of smoothing and clustering are also possible