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Outline
• Probability 

§ Independence
§ Conditional independence
§ Expectation

• Natural Language Processing
§ Preprocessing
§ Statistics
§ Language models
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Independence
• Two events A, B are independent, if (the following are 

equivalent)
§ P(A, B) = P(A) * P(B)
§ P(A | B) = P(A)
§ P(B | A) = P(B)

• For a 4-sided die, let
§ A=outcome is small
§ B=outcome is even
§ Are A and B independent?

• How about a 6-sided die?
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Independence
• Independence is a domain knowledge
• If A, B are independent, the joint probability table 

between A, B is simple: 
§ it has k2 cells, but only 2k-2 parameters.  This is 

good news – more on this later…
• Example: P(burglary)=0.001, P(earthquake)=0.002. 

Let’s say they are independent.  The full joint 
probability table=?
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Conditional independence
• Random variables can be dependent, but 

conditionally independent
• Your house has an alarm

§ Neighbor John will call when he hears the alarm
§ Neighbor Mary will call when she hears the alarm
§ Assume John and Mary don’t talk to each other

• JohnCall independent of MaryCall?  
§ No – If John called, likely the alarm went off, which 

increases the probability of Mary calling
§ P(MaryCall | JohnCall) ¹ P(MaryCall)
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Conditional independence
• If we know the status of the alarm, JohnCall won’t 

affect Mary at all
P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)
• We say JohnCall and MaryCall are conditionally 

independent, given Alarm
• In general A, B are conditionally independent given C

§ if P(A | B, C) = P(A | C), or
§ P(B | A, C) = P(B | C), or
§ P(A, B | C) = P(A | C) * P(B | C)
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Independence example #1

x, y P(X = x, Y = y)

sun, on-time 0.20

rain, on-time 0.20

snow, on-time 0.05

sun, late 0.10

rain, late 0.30

snow, late 0.15

x P(X = x)
sun 0.3

rain 0.5

snow 0.2

joint distribution marginal distributions

y P(Y = y)
on-time 0.45

late 0.55

Are X and Y independent here? NO.
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Independence example #2

x, y P(X = x, Y = y)

sun, fly-United 0.27

rain, fly-United 0.45

snow, fly-United 0.18

sun, fly-Delta 0.03

rain, fly-Delta 0.05

snow, fly-Delta 0.02

x P(X = x)
sun 0.3

rain 0.5

snow 0.2

joint distribution marginal distributions

y P(Y = y)
fly-United 0.9

fly-Delta 0.1

Are X and Y independent here?  YES.
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Expected values

• The expected value of a random variable that takes 
on numerical values is defined as:

This is the same thing as the mean

• We can also talk about the expected value of a 
function of a random variable
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Expected value examples

• Suppose each lottery ticket costs $1 and the winning 
ticket pays out $100.  The probability that a particular 
ticket is the winning ticket is 0.001.

• Shoesize

What is the expectation of the gain?
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Expected value examples

• Suppose each lottery ticket costs $1 and the winning 
ticket pays out $100.  The probability that a particular 
ticket is the winning ticket is 0.001.

• Shoesize
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Summary

• Axioms of probability and related properties
• Joint/marginal/conditional probabilities
• Bayes’ rule for reasoning
• Independence and conditional independence
• Expectation
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Natural language Processing (NLP)
• The processing of the human languages by 

computers

• One of the oldest AI tasks
• One of the most important AI tasks
• One of the hottest AI tasks nowadays
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Difficulty
• Difficulty 1: ambiguous, typically no formal description

• Example: “We saw her duck.”

How many different meanings?
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Difficulty
• Difficulty 1: ambiguous, typically no formal description

• Example: “We saw her duck.”
• 1. We looked at a duck that belonged to her.
• 2. We looked at her quickly squat down to avoid 

something.
• 3. We use a saw to cut her duck.
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Difficulty
• Difficulty 2: computers do not have human concepts

• Example: “She like little animals. For example, 
yesterday we saw her duck.”
• 1. We looked at a duck that belonged to her.
• 2. We looked at her quickly squat down to avoid 

something.
• 3. We use a saw to cut her duck.
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WORDS

Preprocess
Zipf’s Law



slide 18

Preprocess

• Corpus: often a set of text documents
• Tokenization or text normalization: turn corpus into 

sequence(s) of tokens

1.Remove unwanted stuff: HTML tags, encoding tags
2.Determine word boundaries: usually white space and 

punctuations
§ Sometimes can be tricky, like Ph.D. 
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Preprocess

• Tokenization or text normalization: turn data into 
sequence(s) of tokens

1.Remove unwanted stuff: HTML tags, encoding tags
2.Determine word boundaries: usually white space and 

punctuations
§ Sometimes can be tricky, like Ph.D. 

3.Remove stopwords: the, of,  a, with, …
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Preprocess

• Tokenization or text normalization: turn data into sequence(s) of 
tokens

1. Remove unwanted stuff: HTML tags, encoding tags
2. Determine word boundaries: usually white space and punctuations

§ Sometimes can be tricky, like Ph.D. 
3. Remove stopwords: the, of,  a, with, …
4. Case folding: lower-case all characters. 

§ Sometimes can be tricky, like US and us
5. Stemming/Lemmatization (optional): looks, looked, looking à look
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Vocabulary
Given the preprocessed text
• Word token: occurrences of a word
• Word type: unique word as a dictionary entry (i.e., 

unique tokens)

• Vocabulary: the set of word types
§ Often 10k to 1 million on different corpora
§ Often remove too rare words
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Zipf’s Law
• Word count 𝑓, word rank 𝑟
• Zipf’s law: 𝑓 ∗ 𝑟 ≈ constant

Zipf’s law on the corpus Tom Sawyer
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TEXT: BAG-OF-WORDS 
REPRESENTATION

Bag-of-Words
tf-idf
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Bag-of-Words
How to represent a piece of text (sentence/document) 
as numbers? 

• Let 𝑚 denote the size of the vocabulary
• Given a document 𝑑, let 𝑐(𝑤, 𝑑) denote the 

#occurrence of 𝑤 in 𝑑
• Bag-of-Words representation of the document

𝑣! = 𝑐 𝑤", 𝑑 , 𝑐 𝑤#, 𝑑 , … , 𝑐 𝑤$, 𝑑 /𝑍!
• Often 𝑍! = ∑% 𝑐(𝑤, 𝑑)
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Example
• Preprocessed text: this is a good sentence this is 

another good sentence

• BoW representation:
𝑐 ′𝑎&, 𝑑 /𝑍!, 𝑐 ′𝑖𝑠&, 𝑑 /𝑍!, … , 𝑐 ′𝑒𝑥𝑎𝑚𝑝𝑙𝑒&, 𝑑 /𝑍!

• What is 𝑍!?
• What is 𝑐 ′𝑎&, 𝑑 /𝑍!?
• What is 𝑐 ′𝑒𝑥𝑎𝑚𝑝𝑙𝑒&, 𝑑 /𝑍!?
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tf-idf

• tf: normalized term frequency

𝑡𝑓! =
𝑐(𝑤, 𝑑)

max
"
𝑐(𝑣, 𝑑)

• idf: inverse document frequency

𝑖𝑑𝑓! = log
total #doucments

#documents containing 𝑤
• tf-idf: 𝑡𝑓-𝑖𝑑𝑓! = 𝑡𝑓! ∗ 𝑖𝑑𝑓!
• Representation of the document

𝑣# = [𝑡𝑓−𝑖𝑑𝑓!! , 𝑡𝑓−𝑖𝑑𝑓!" , … , 𝑡𝑓−𝑖𝑑𝑓!#]
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Cosine Similarity
How to measure similarities between pieces of text?

• Given the document vectors, can use any similarity 
notion on vectors
• Commonly used in NLP: cosine of the angle between 

the two vectors

𝑠𝑖𝑚 𝑥, 𝑦 =
𝑥'𝑦

𝑥'𝑥 𝑦'𝑦
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TEXT: STATISTICAL 
LANGUAGE MODEL

Statistical language model
N-gram
Smoothing
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Probabilistic view
• Use probabilistic distribution to model the language
• Dates back to Shannon (information theory; bits in 

the message)
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Statistical language model
• Language model: probability distribution over 

sequences of tokens
• Typically, tokens are words, and distribution is 

discrete

• Tokens can also be characters or even bytes

• Sentence: “the quick brown fox jumps over the lazy 
dog”

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥( 𝑥)Tokens:
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Statistical language model
• For simplification, consider fixed length sequence of 

tokens (sentence)

• Probabilistic model:

(𝑥!, 𝑥", 𝑥#, … , 𝑥*+!, 𝑥*)

P [𝑥!, 𝑥", 𝑥#, … , 𝑥*+!, 𝑥*]
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Unigram model
• Unigram model: define the probability of the 

sequence as the product of the probabilities of the 
tokens in the sequence

• Independence!

P 𝑥!, 𝑥", … , 𝑥* =*
,-!

*

P[𝑥,]
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A simple unigram example
• Sentence: “the dog ran away”

• How to estimate               on the training corpus?

+P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = +P 𝑡ℎ𝑒 +P 𝑑𝑜𝑔 +P 𝑟𝑎𝑛 +P[𝑎𝑤𝑎𝑦]

+P 𝑡ℎ𝑒
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A simple unigram example
• Sentence: “the dog ran away”

• How to estimate               on the training corpus?

+P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = +P 𝑡ℎ𝑒 +P 𝑑𝑜𝑔 +P 𝑟𝑎𝑛 +P[𝑎𝑤𝑎𝑦]

+P 𝑡ℎ𝑒
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n-gram model
• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of 
the 𝑛-th token given the preceding 𝑛 − 1 tokens

P 𝑥!, 𝑥", … , 𝑥* = P 𝑥!, … , 𝑥.+! *
,-.

*

P[𝑥,|𝑥,+./!, … , 𝑥,+!]
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n-gram model
• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of 
the 𝑛-th token given the preceding 𝑛 − 1 tokens

P 𝑥!, 𝑥", … , 𝑥* = P 𝑥!, … , 𝑥.+! *
,-.

*

P[𝑥,|𝑥,+./!, … , 𝑥,+!]

Markovian assumptions
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Typical 𝑛-gram model
• 𝑛 = 1: unigram
• 𝑛 = 2: bigram
• 𝑛 = 3: trigram
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Training 𝑛-gram model 
• Straightforward counting: counting the co-occurrence 

of the grams

For all grams (𝑥()*+", … , 𝑥()", 𝑥()
1.count and estimate FP[𝑥()*+", … , 𝑥()", 𝑥(]
2.count and estimate FP 𝑥()*+", … , 𝑥()"
3.compute

+P 𝑥, 𝑥,+./!, … , 𝑥,+! =
+P 𝑥,+./!, … , 𝑥,+!, 𝑥,
+P 𝑥,+./!, … , 𝑥,+!
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A simple trigram example
• Sentence: “the dog ran away”

+P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = +P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 +P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

+P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 = +P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛
+P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]

+P[𝑑𝑜𝑔 𝑟𝑎𝑛]
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Drawback 
• Sparsity issue: FP … most likely to be 0

• Bad case: “dog ran away” never appear in the 
training corpus, so FP[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = 0
• Even worse: “dog ran” never appear in the training 

corpus, so FP[𝑑𝑜𝑔 𝑟𝑎𝑛] = 0
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Rectify: smoothing
• Basic method: adding non-zero probability mass to 

zero entries

• Example: Laplace smoothing that adds one count to 
all 𝑛-grams

pseudocount[𝑑𝑜𝑔] = actualcount 𝑑𝑜𝑔 + 1
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Rectify: smoothing
• Basic method: adding non-zero probability mass to 

zero entries

• Example: Laplace smoothing that adds one count to 
all 𝑛-grams

pseudocount[𝑑𝑜𝑔] = actualcount 𝑑𝑜𝑔 + 1

+P 𝑑𝑜𝑔 =
pseudocount[𝑑𝑜𝑔]

pseudo length of the corpus
=

pseudocount[𝑑𝑜𝑔]
actual length of the corpus + |𝑉|
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Rectify: smoothing
• Basic method: adding non-zero probability mass to 

zero entries

• Example: Laplace smoothing that adds one count to 
all 𝑛-grams

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = actualcount
𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 + 1
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛] = ?
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Rectify: smoothing
• Basic method: adding non-zero probability mass to 

zero entries

• Example: Laplace smoothing that adds one count to 
all 𝑛-grams

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = actualcount
𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 + 1
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛] ≈actualcount 𝑑𝑜𝑔 𝑟𝑎𝑛 + |𝑉|

+P 𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛 =
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]
pseudocount [𝑑𝑜𝑔 𝑟𝑎𝑛]

since #bigrams ≈#trigrams on the corpus
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Example
• Preprocessed text: this is a good sentence this is 

another good sentence

• How many unigrams?
• How many bigrams?
• Estimate FP 𝑖𝑠|𝑡ℎ𝑖𝑠 without using Laplace smoothing
• Estimate FP 𝑖𝑠|𝑡ℎ𝑖𝑠 using Laplace smoothing (|V| = 

10000)



slide 46

Rectify: smoothing
• Basic method: adding non-zero probability mass to 

zero entries
§ Example: Laplace smoothing

• Back-off methods: restore to lower order statistics
§ Example: if FP[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛] does not work, use 
FP 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 as  replacement

• Mixture methods: use a linear combination of 
FP 𝑎𝑤𝑎𝑦 𝑟𝑎𝑛 and FP[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]
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Another drawback
• High dimesion: # of grams too large

• Vocabulary size: about 10k=2^14
• #trigram: about 2^42
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Rectify: clustering
• Class-based language models: cluster tokens into 

classes; replace each token with its class
• Significantly reduces the vocabulary size; also 

address sparsity issue

• Combinations of smoothing and clustering are also 
possible


