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Independence

Two events A, B are independent, if (the following are
equivalent)

" P(A, B) =P(A) " P(B)

" P(A|B)=P(A)

" P(B|A)=P(B)

For a 4-sided die, let

= A=outcome is small

= B=outcome is even

= Are A and B independent?
How about a 6-sided die?
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Independence

Independence is a domain knowledge

If A, B are independent, the joint probability table
between A, B is simple:

= it has k? cells, but only 2k-2 parameters. This is
good news — more on this later...

Example: P(burglary)=0.001, P(earthquake)=0.002.
Let's say they are independent. The full joint
probability table=?
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Conditional independence

Random variables can be dependent, but
conditionally independent

Your house has an alarm
= Neighbor John will call when he hears the alarm

= Neighbor Mary will call when she hears the alarm
= Assume John and Mary don't talk to each other

JohnCall independent of MaryCall?
= No — If John called, likely the alarm went off, which
increases the probability of Mary calling

= P(MaryCall | JohnCall) = P(MaryCall)
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Conditional independence

If we know the status of the alarm, JohnCall won'’t
affect Mary at all

P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)

We say JohnCall and MaryCall are conditionally
iIndependent, given Alarm

In general A, B are conditionally independent given C
" fP(A|B,C)=P(A|C), or

 PB|A C)=P(B|C),or
 PA,B|C)=PA|C)*P(B|C)
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Independence example #1

X,y P(X=x,Y=Yy) X P(X=x)
sun, on-time 0.20 sun 0.3
rain, on-time 0.20 rain 0.5
Snow, on-time 0.05 SNOW 0.2
sun, late 0.10 y P(Y=y)
rain, late 0.30 on-time 0.45
snow, late 0.15 late 0.55

Are X and Y independent here? NO.
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Independence example #2

X,y PX=x,Y=y) X P(X=x)

sun, fly-United 0.27 sun 0.3
rain, fly-United 0.45 rain 0.5
snow, fly-United 0.18 SNOW 0.2
sun, fly-Delta 0.03

| Y P(Y=y)
rain, fly-Delta 0.05 fly-United 0.9
snow, fly-Delta 0.02 fly-Delta 01

Are X and Y independent here”? YES.
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Expected values

The expected value of a random variable that takes
on numerical values is defined as:

E[X]| = Z rP(x)
This is the same thing as the mean

We can also talk about the expected value of a
function of a random variable

Elg(X)] = ) _ g(x)P(x)
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Expected value examples

¢ Shoesize

E|[Shoesize]
= 5 X P(Shoesize =5)+ ---+ 14 x P(Shoesize = 14)

® Suppose each lottery ticket costs $1 and the winning
ticket pays out $100. The probability that a particular
ticket is the winning ticket is 0.001.

What is the expectation of the gain?
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Expected value examples

¢ Shoesize

E|Shoesize]
= 5 X P(Shoesize =5)+ ---+ 14 x P(Shoesize = 14)

® Suppose each lottery ticket costs $1 and the winning
ticket pays out $100. The probability that a particular
ticket is the winning ticket is 0.001.

E|gain(Lottery)]

gain(winning)P(winning) 4+ gain(losing)P(losing)
($100 — $1) x 0.001 — $1 x 0.999

= —30.9
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Summary

Axioms of probability and related properties
Joint/marginal/conditional probabilities
Bayes’ rule for reasoning

Independence and conditional independence
Expectation
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Natural language Processing (NLP)

The processing of the human languages by
computers

One of the oldest Al tasks
One of the most important Al tasks
One of the hottest Al tasks nowadays
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Difficulty

¢ Difficulty 1: ambiguous, typically no formal description

® Example: “We saw her duck.”

How many different meanings?
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Difficulty

Difficulty 1: ambiguous, typically no formal description

Example: “We saw her duck.”
1. We looked at a duck that belonged to her.

2. We looked at her quickly squat down to avoid
something.

3. We use a saw to cut her duck.
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Difficulty

Difficulty 2: computers do not have human concepts

Example: “She like little animals. For example,
yesterday we saw her duck.”

1. We lo t a duck that belonged to her.
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Preprocess
Zipf's Law

WORDS
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Preprocess

Corpus: often a set of text documents

Tokenization or text normalization: turn corpus into
sequence(s) of tokens

Remove unwanted stuff: HTML tags, encoding tags

Determine word boundaries: usually white space and
punctuations

= Sometimes can be tricky, like Ph.D.
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Preprocess

Tokenization or text normalization: turn data into
sequence(s) of tokens

Remove unwanted stuff: HTML tags, encoding tags

Determine word boundaries: usually white space and
punctuations

= Sometimes can be tricky, like Ph.D.
Remove stopwords: the, of, a, with, ...
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Preprocess

Tokenization or text normalization: turn data into sequence(s) of
tokens

Remove unwanted stuff: HTML tags, encoding tags

Determine word boundaries: usually white space and punctuations
= Sometimes can be tricky, like Ph.D.

Remove stopwords: the, of, a, with, ...

Case folding: lower-case all characters.

= Sometimes can be tricky, like US and us
Stemming/Lemmatization (optional): looks, looked, looking = look
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Vocabulary

Given the preprocessed text
Word token: occurrences of a word

Word type: unique word as a dictionary entry (i.e.,
unique tokens)

Vocabulary: the set of word types

= Often 10k to 1 million on different corpora
= Often remove too rare words
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Zipf’s Law

® Word count f, word rank r
¢ Zipfslaw: f * r =~ constant

Word Count f rank r fr
the 3332 | 3332
and 2972 2 5944
a 1775 3 5235
he 877 10 770
but 410 20 8400
be 294 30 8820
there 222 40 8880
one 172 50 8600
two 104 100 10400
turned 51 200 10200
comes 16 500 8000
family 8 1000 8000
brushed 4 2000 8000
Could 2 4000 88000
Applausive 1 8000 8000

Zipf’s law on the corpus Tom Sawyer
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Bag-of-Words
tf-idf

TEXT: BAG-OF-WORDS
REPRESENTATION
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Bag-of-Words

How to represent a piece of text (sentence/document)
as numbers?

Let m denote the size of the vocabulary

Given a document d, let c(w, d) denote the
#occurrence of win d

Bag-of-Words representation of the document

vy = |lc(wyg,d), c(wy, d), ..., cw,,,d)]/Z,4
Often Z,; = )., c(w,d)
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Preprocessed text: this is a good sentence this is

Example

another good sentence

BoW representation:

lcCa’,d)/Z4,c(is’,d)/Z,, ...,c(example’,d) /Z 4]

W
W

W

nat is Z,;7?
natis c('a’,d)/Z;7?

nat is c("example’,d)/Z ;7
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tf-idf

tf: normalized term frequency
e c(w,d)
fw = max (v, d)

idf: inverse document frequency
_ total #doucments
ldfw = log #documents containing w
tt-idf: ¢f-idf, = tf,, *idf,,
Representation of the document

vy = [tf=idf,, , tf~idfy,, ., tf~idf, ]
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Cosine Similarity

How to measure similarities between pieces of text?

Given the document vectors, can use any similarity
notion on vectors

Commonly used in NLP: cosine of the angle between
the two vectors

T

\/xTx\/yTy

sim(x,y ) =

slide 27



Statistical language model
N-gram
Smoothing

TEXT: STATISTICAL
LANGUAGE MODEL
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Probabilistic view

Use probabilistic distribution to model the language

Dates back to Shannon (information theory; bits in
the message)
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Statistical language model

Language model: probability distribution over
sequences of tokens

Typically, tokens are words, and distribution is
discrete

Tokens can also be characters or even bytes

Sentence: “the quick brown fox jumps over the lazy
dog”

Tokens: x; x, X3 X4 X5 Xg X7 Xg Xg
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Statistical language model

For simplification, consider fixed length sequence of
tokens (sentence)

(X1, X9, X3, ey Xp_1, X7)
Probabilistic model:

Px{, X5, X3, e, X7_1, X7]
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Unigram model

Unigram model: define the probability of the
sequence as the product of the probabilities of the

tokens in the sequence

Plxq, x5, . Hth

Independence!
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A simple unigram example

¢ Sentence: “the dog ran away”

P[the dog ran away] = P[the] P[dog] P[ran] P[away]

® How to estimate p[the] oN the training corpus?

slide 33



A simple unigram example
¢ Sentence: “the dog ran away”

P[the dog ran away] = P[the] P[dog] P[ran] P[away]

® How to estimate P[the] on the training corpus?

Word Count f
the 3332
and 2972
a 1775
he 877
but 410
be 294
there 222
one 172
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n-gram model

n-gram: sequence of n tokens

n-gram model: define the conditional probability of
the n-th token given the preceding n — 1 tokens

T
Plx1,x2, oy X ] = Plxq, oo, x5 —4] 1_[ Plx¢|Xt—n1s s Xp—1]
t=n
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n-gram model

® m-gram: sequence of n tokens

® m-gram model: define the conditional probability of
the n-th token given the preceding n — 1 tokens

T
Plx1, X2, oo, X] = Plxq, oo, x4 l_[ Plx¢Xe—n1s s Xp—1]
t=n

Markovian assumptions
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Typical n-gram model

n = 1: unigram
n = 2: bigram
n = 3: trigram
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Training n-gram model

¢ Straightforward counting: counting the co-occurrence
of the grams

For all grams (x;_,, 11, o) X¢—1, X¢)

1 .count and estimate P[x;_,,, 1, ..., X;_1, X;]
2 .count and estimate P[x,_,.1, .., ;1]
3.compute

FA)[xt—n+1: s Xpq, X¢ ]

PIXe—pa1s s Xeot]

p[xtlxt—n+1t ) xt—l] —
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A simple trigram example

¢ Sentence: “the dog ran away”

P[the dog ran away] = P[the dog ran] P[away|dog ran]

P[dog ran away]

P[the dog ran away] = P[the dog ran] —
P[dog ran]
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Drawback
Sparsity issue: P[...] most likely to be 0

Bad case: “dog ran away” never appear in the
training corpus, so P[dog ran away] = 0

Even worse: “dog ran” never appear in the training
corpus, so P[dog ran] =0
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Rectify: smoothing

Basic method: adding non-zero probability mass to
zero entries

Example: Laplace smoothing that adds one count to
all n-grams

pseudocount[dog]| = actualcount|[dog]| + 1

slide 41



Rectify: smoothing

Basic method: adding non-zero probability mass to
zero entries

Example: Laplace smoothing that adds one count to
all n-grams

pseudocount[dog]| = actualcount|[dog]| + 1

pseudocount|dog| pseudocount|dog|

Pldog] = -
ldog] pseudo length of the corpus  actual length of the corpus + |V/|
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Rectify: smoothing

¢ Basic method: adding non-zero probability mass to
zero entries

¢ Example: Laplace smoothing that adds one count to
all n-grams

pseudocount[dog ran away| = actualcount

|[dog ran away] + 1
pseudocount[dog ran| =7
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Rectify: smoothing

¢ Basic method: adding non-zero probability mass to
zero entries

¢ Example: Laplace smoothing that adds one count to
all n-grams

pseudocount[dog ran away| = actualcount
|[dog ran away] + 1

pseudocount[dog ran]| =actualcount|dog ran| + |V|

pseudocount|dog ran away|

P d =
laway|dog ran] pseudocount [dog ran|

since #bigrams =~#trigrams on the corpus
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Example

Preprocessed text: this is a good sentence this is
another good sentence

How many unigrams?
How many bigrams®?
Estimate P[is|this] without using Laplace smoothing

Estimate P[is|this] using Laplace smoothing (|V| =
10000)
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Rectify: smoothing

Basic method: adding non-zero probability mass to
zero entries

= Example: Laplace smoothing

Back-off methods: restore to lower order statistics

= Example: if P[away|dog ran] does not work, use
Plaway|ran] as replacement

Mixture methods: use a linear combination of
Plaway|ran] and P[away|dog ran]

slide 46



Another drawback

High dimesion: # of grams too large

Vocabulary size: about 10k=2"14
#trigram: about 2”42
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Rectify: clustering

Class-based language models: cluster tokens into
classes; replace each token with its class

Significantly reduces the vocabulary size; also
address sparsity issue

Combinations of smoothing and clustering are also
possible
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