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Uninformed search
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Overview of uninformed search algorithms
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1. edge costs constant
2. edge costs   > 0.  C* is the best goal path cost.

3. both directions BFS; not always feasible.

b: branching factor (assume finite) d: goal depth m: graph depth

Slide created by Xiaojin Zhu (UW-Madison), lightly edited by Anthony Gitter
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Unified view of uninformed search

• General state-space search algorithm with different 

node scores can implement various behaviors

• Breadth-first search

• node score = node depth (queue behavior)

• Depth-first search

• node score = -1 * node depth (stack behavior)

• Uniform-cost search

• node score = path cost g(s)
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General search: breadth-first
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General search: depth-first
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General search: uniform-cost
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Informed search
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Heuristics

• Heuristic: h(s), non-negative score that estimates 

remaining cost to goal

• Difference between uninformed and informed

• Valid heuristic: Proposed node score that meets the 

definition of a heuristic

• Always non-negative

• Admissible heuristic: valid heuristic that never over-

estimates true cost to goal

• Even for the goal state
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Effects of good heuristics

• A good heuristic helps search avoid wasting time in 

unpromising regions of the state space

d BFS A*(h1) A*(h2)

6 128 24 19

8 368 48 31

10 1,033 116 48

20 91,493 9,905 1,318

28 463,234 202,565 22,055

h1 is number misplaced tiles
h2 is Manhattan distance

Nodes generated in 8-puzzle with solution length d

Data from Figure 3.26 Russell and Norvig 2020
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Overview of informed search algorithms

1. uninformed search, for comparison

Node score Heuristic Optimal Space savings

Uniform-cost

search1

g(s) None Yes None

Best-first

greedy search

h(s) Valid No None

A search g(s)+h(s) Valid No None

A* search g(s)+h(s) Admissible Yes None

IDA* search g(s)+h(s) Admissible Yes Does not expand nodes 

with score above 

threshold, iterative

Beam search g(s)+h(s) Admissible No Keep only k best nodes 

or nodes at most  worse 

than the best
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Advanced search
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(Un)informed search versus optimization

Uninformed and informed 

search

Optimization

Scores on states Scores on states

Care about path from start to 

goal and path cost

Care about state with the 

best score

Successor function to move 

from one state to another

Generate neighbors

(or cross-over + mutation)

Have learned several optimal 

algorithms

Focused on methods that 

may return local optimum

Many algorithms fail in 

massive state spaces

Have strategies for large 

or infinite state spaces
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Neighborhoods in hill climbing

• Important to get right for local search

• Ideally small neighborhood

• Preserve structure in the problem

• May require some ingenuity and domain 

knowledge

• What happens if the neighborhood is

• Massive?

• A random state?
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Comparing optimization algorithms

1. hard to quantify, rough estimates  2. run for finite time 3. without restarts

Optimal Susceptibility to 

getting stuck in 

local optima1

Greediness1 What neighbor to 

select?

Random 

search2

No None None Does not use 

neighbors

Hill climbing No Extreme Extreme Best neighbor

Hill climbing 

with restarts

No Some Extreme Best neighbor

Stochastic hill 

climbing3

No High High Random better 

neighbor

First choice hill 

climbing3

No High High First better neighbor

Simulated 

annealing

No Some Moderate Better, or worse with 

small probability

Genetic 

algorithm

No Some Low Generates “neighbor” 

population
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Simulated annealing example

• A robot in a large 

2D room needs to 

find the location 

with the most 

sunlight so it can 

recharge.

• How does 

simulated annealing 

help? 
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Simulated annealing example

• A robot in a large 

2D room needs to 

find the location 

with the most 

sunlight so it can 

recharge.

• How does 

simulated annealing 

help?

• Darker positions 

have higher score
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Simulated annealing example

• Hill climbing
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Simulated annealing example

• Hill climbing
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Simulated annealing example

• Hill climbing

• No better neighbor

• Stop
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Simulated annealing example

• Simulated 

annealing
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Simulated annealing example

• Simulated 

annealing

• Only LEFT is better

• UP, DOWN, RIGHT 

all have worse 

scores

• However, select 

RIGHT with small 

probability
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Simulated annealing example

• Simulated 

annealing

• Now UP, LEFT, and 

RIGHT all have 

better scores
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Simulated annealing example

• Simulated 

annealing
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Simulated annealing example

• Simulated 

annealing

• If the temperature 

schedule was good, 

robot is very 

unlikely to leave this 

global optimum


