Reinforcement Learning Summary

Yin Li

yin.li@wisc.edu University of Wisconsin, Madison

Key concepts of (deep) neural networks

- Reinforcement learning task
- Markov decision process
- Value functions & Bellman equation
- Value iteration

Reinforcement Learning (RL)

Task of an agent embedded in an environment repeat forever

- 1) sense world
- 2) reason
- 3) choose an action to perform
- 4) get feedback (usually reward = 0)
- 5) learn

the environment may be the physical world or an artificial one

Formalism: Markov Decision Processes

- States S, beginning with initial state s₀
- Actions A
- Transition model $P(s_{t+1} | s_t, a_t)$
 - Markov assumption: the probability of going to s_{t+1} from s_t depends only on s_t and a_t and not on any other past actions or states
- Reward function $r(s_t)$
- **Policy** $\pi(s) : S \to A$ the action that an agent takes in any given state
 - The "solution" to an MDP

Defining the optimal policy

• Given a policy π , we can define the *expected utility* over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) = \sum_{\substack{\text{sequences} \\ \text{starting from } s_0}} P(\text{sequence}) U(\text{sequence})$$

- The value function of s_0 w.r.t. policy π
- The utility of a state sequence is defined as the sum of discounted rewards
- The optimal policy should maximize this utility

Discounted rewards

To define the utility of a state sequence, *discount* the individual state rewards by a factor γ between 0 and 1

$$U(s_0, s_1, ...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \cdots$$
$$= \sum_{t \ge 0} \gamma^t r(s_t)$$

Worth Now

Worth Next Step

Worth In Two Steps

The Bellman equation

 Define state utility V*(s) as the expected sum of discounted rewards if the agent executes an optimal policy starting in state s

The Bellman equation

What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V^*(s')$$

The Bellman equation

 Recursive relationship between optimal values of successive states:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V^*(s')$$

- The best policy to the MDP from s_0 is given by $V^*(s)$
- The solution is

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Value iteration

- Start out with every $V_0(s) = 0$
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to the equation:

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

- With infinitely many iterations, guaranteed to find the correct utility values V*(s)
 - Even if we randomly traverse environment instead of looping through each state and action
 - In practice, don't need infinitely many iterations...