
slide 1

Reinforcement Learning
Summary

Yin Li
yin.li@wisc.edu

University of Wisconsin, Madison



slide 2

Key concepts of (deep) neural networks
• Reinforcement learning task
• Markov decision process
• Value functions & Bellman equation
• Value iteration



slide 3

Reinforcement Learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one



slide 4

Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)
 Markov assumption: the probability of going to 𝑠𝑠𝑡𝑡+1

from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on any 
other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in 
any given state
 The “solution” to an MDP



slide 5

Defining the optimal policy

• Given a policy π, we can define the expected utility 
over all possible state sequences from 𝑠𝑠0 produced by 
following that policy:

• The value function of 𝑠𝑠0 w.r.t. policy 𝜋𝜋
• The utility of a state sequence is defined as the sum of 

discounted rewards
• The optimal policy should maximize this utility

𝑉𝑉𝜋𝜋 𝑠𝑠0 = �

sequences
starting from 𝑠𝑠0

𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)



slide 6

Discounted rewards
• To define the utility of a state sequence, discount the 

individual state rewards by a factor γ between 0 and 1

𝑈𝑈 𝑠𝑠0, 𝑠𝑠1, … = 𝑟𝑟 𝑠𝑠0 + 𝛾𝛾 𝑟𝑟 𝑠𝑠1 + 𝛾𝛾2𝑟𝑟 𝑠𝑠2 + ⋯

= �
𝑡𝑡≥0

𝛾𝛾𝑡𝑡 𝑟𝑟 𝑠𝑠𝑡𝑡

Image source: P. Abbeel and D. Klein 



slide 7

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• Define state utility 𝑉𝑉∗ 𝑠𝑠 as the expected sum of 
discounted rewards if the agent executes an optimal
policy starting in state s

Image source: L. Lazbenik



slide 8

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the recursive expression for 𝑉𝑉∗ 𝑠𝑠 in terms of 
𝑉𝑉∗ 𝑠𝑠𝑠 - the utilities of its successors?

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Image source: L. Lazbenik



slide 9

The Bellman equation
• Recursive relationship between optimal values of 

successive states:

• The best policy to the MDP from 𝑠𝑠0 is given by 𝑉𝑉∗ 𝑠𝑠
• The solution is 

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)



slide 10

Value iteration
• Start out with every V0 𝑠𝑠 = 0
• Iterate until convergence
 During the ith iteration, update the utility of each 

state according to the equation:

• With infinitely many iterations, guaranteed to find the 
correct utility values 𝑉𝑉∗ 𝑠𝑠
 Even if we randomly traverse environment instead 

of looping through each state and action
 In practice, don’t need infinitely many iterations…

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)


	Slide Number 1
	Key concepts of (deep) neural networks
	Reinforcement Learning (RL)
	Formalism: Markov Decision Processes
	Defining the optimal policy
	Discounted rewards
	The Bellman equation
	The Bellman equation
	The Bellman equation
	Value iteration

