(Deep) Neural Networks Summary

Yin Li

yin.li@wisc.edu
University of Wisconsin, Madison

Key concepts of (deep) neural networks

- Modeling a single neuron
- Linear / Nonlinear Perception
- Limited power of a single neuron
- Connecting many neurons
- Neural networks
- Training of neural networks
- Loss functions
- Backpropagation on a computational graph
- Deep neural networks
- Convolution
- Activation / pooling
- Design of deep networks

Modeling a single neuron

- Perceptron: $a=g\left(\sum_{d} w_{d} x_{d}\right)$
- Activation function g : identity, sigmoid, ReLU

Limited power of one single neuron

- Perceptron: $a=g\left(\sum_{d} w_{d} x_{d}\right)$
- Activation function g : identity, sigmoid, ReLU

- Decision boundary linear even for nonlinear g
- Can not handle XOR problem

Connecting many neurons: multilayer perceptron

- Standard way to connect Perceptrons
- Example: 1 hidden layer, 1 output layer, depth $=2$

A single layer in neural networks

- $\boldsymbol{a}=g\left(\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}\right)$

A single layer in neural networks

- $\boldsymbol{a}=g\left(\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}\right)$
- Work for any element-wise activation function g
- Work for any number of neurons
- Map an input $\boldsymbol{x} \in R^{n}$ to an output $\boldsymbol{a} \in R^{m}$
- $\boldsymbol{x} \in R^{n}, \boldsymbol{W} \in R^{n \times m}, \boldsymbol{b} \in R^{m}, \boldsymbol{a} \in R^{m}$
- Also called a fully connected layer

Neural Networks

- What type of functions shall we consider for f ?

Proposal: Composing a set of (nonlinear) functions g

$$
f(\boldsymbol{x} ; \boldsymbol{\theta})=g_{1}\left(\ldots g_{n-1}\left(g_{n}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{\boldsymbol{n}}\right), \boldsymbol{\theta}_{n-\mathbf{1}}\right) \ldots, \boldsymbol{\theta}_{\mathbf{1}}\right)
$$

Example: $\mathbf{a}=\operatorname{sigmoid}\left(\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}\right)=g(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b})$

Output normalization: Sigmoid

- Normalize the output into the range of $(0,1)$
- As a probability distribution for a binary variable
- No parameters and

Sigmoid

$$
\operatorname{sigmoid}(x)=\frac{1}{1+e^{-x}}
$$ differentiable

Output normalization: Softmax

- Normalize a vector such that
- Each element in the range of $(0,1)$
- All elements sum to 1

Softmax

$$
\operatorname{softmax}\left(x_{k}\right)=\frac{\exp \left(x_{k}\right)}{\sum_{j} \exp \left(x_{j}\right)}
$$

- No parameters and differentiable

Loss functions

- Classification
- Cross entropy loss
- C-way classification problem
- Often in combination with sigmoid (binary) or softmax (Cway)
- Regression
- L2 loss

$$
H(y, p)=-\sum_{j} y_{j} \log \left(p_{j}\right)
$$

$$
L_{2}(y, \hat{y})=\sum_{j}\left(y_{j}-\hat{y}_{j}\right)^{2}
$$

Learning in neural networks

- Define a loss function

$$
E=\frac{1}{|D|} \sum_{x \in D} E_{x}
$$

- x : one training point in the training set D
- a : the output for the training point x
- y : the binary label for x
- Optimize all the weights w on all the edges
- Apparent difficulty: how to update the weights for the hidden units?
- It turns out to be OK: we can still do gradient descent. The trick you need is the chain rule
- The algorithm is known as back-propagation

Mini-batch stochastic gradient descent

- Select a learning rate $\alpha>0$
- Initialize the model parameters (edge weights) $w^{(0)}$
- For $t=1,2, \ldots$
- Randomly sample a subset \widehat{D} from D
- Compute $\frac{\partial E_{x}}{\partial w}$ (per sample gradients w.r.t. w) for $\mathrm{x} \in \widehat{D}$ using back-propagation
- Update the parameters

$$
w^{(t)}=w^{(t-1)}-\alpha \frac{1}{|\widehat{D}|} \sum_{x \in \widehat{D}} \frac{\partial E_{x}}{\partial w}
$$

- Repeat until E converges

The key challenge is to compute $\frac{\partial E_{x}}{\partial w}$!

Neural network as computational graph

- (Deep) Neural Network:

Composing a set of (nonlinear) functions g

$$
f(\boldsymbol{x} ; \boldsymbol{\theta})=g_{1}\left(\ldots g_{n-1}\left(g_{n}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{\boldsymbol{n}}\right), \boldsymbol{\theta}_{\boldsymbol{n}-\mathbf{1}}\right) \ldots, \boldsymbol{\theta}_{\mathbf{1}}\right)
$$

Neural network as computational graph

- $\boldsymbol{a}=\operatorname{sigmoid}\left(\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}\right)$
- Decompose functions into atomic operations
- Separate data (variables) and computing (operations)
- Known as a computational graph

Neural network as computational graph

- Differentiable operations
- Forward / backward

Neural network: forward propagation

- Compute the output of the network

Neural network: backward propagation

- Define a loss function E
- Gradient to a variable = gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial E}{\partial \boldsymbol{W}}=\frac{\partial E}{\partial z_{1}} \frac{\partial z_{1}}{\partial \boldsymbol{W}}
$$

Deep neural networks

- Deep Learning: Composing a set of (nonlinear) functions g
$f(\boldsymbol{x} ; \boldsymbol{\theta})=g_{1}\left(\ldots g_{n-1}\left(g_{n}\left(\boldsymbol{x} ; \boldsymbol{\theta}_{\boldsymbol{n}}\right), \boldsymbol{\theta}_{\boldsymbol{n}-\mathbf{1}}\right) \ldots, \boldsymbol{\theta}_{\mathbf{1}}\right)$
- Each of the function g is represented using a layer of a neural network
- Key element: $\sigma\left(\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{x}+\boldsymbol{b}\right)$
- Convolution
- Activation functions
- Pooling

Convolution

- Given array u_{t} and w_{t}, their convolution is a function s_{t}

$$
s_{t}=\sum_{a=-\infty}^{+\infty} u_{a} w_{t-a}
$$

- Written as

$$
s=(u * w) \text { or } s_{t}=(u * w)_{t}
$$

- When u_{t} or w_{t} is not defined, assumed to be 0
- Multiply w_{t} to every sliding window of u_{t} and sum up

Convolution

Convolution

Convolution

- A linear operation
- Can be written as matrix vector product

$$
w=[\mathbf{z}, \mathbf{y}, \mathbf{x}], u=[\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathrm{f}]
$$

\mathbf{y}	\mathbf{z}				
\mathbf{x}	\mathbf{y}	\mathbf{z}			
	\mathbf{x}	\mathbf{y}	\mathbf{z}		
		x	y	\mathbf{z}	
			x	y	\mathbf{z}
				x	y

a
b
c
d
e
f

Gradient of convolution

$$
w=[\mathbf{z}, \mathbf{y}, \mathbf{x}] \quad u=[\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}] \quad s=u * w
$$

Gradient of convolution

$$
w=[\mathbf{z}, \mathbf{y}, \mathbf{x}] \quad u=[\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}, \mathbf{f}] \quad s=w * u
$$

S

b	a		z
c	b	a	y
d	c	b	x
e	d	c	
f	e	d	
	f	e	
	U		W

Convolution with stride

- Stride: the step size of the sliding window

Valid Output size: (N - F) // stride + 1

$$
\begin{aligned}
& \text { e.g. } N=7, F=3 \text { : } \\
& \text { stride } 1=>(7-3) / / 1+1=5 \\
& \text { stride } 2=>(7-3) / / 2+1=3 \\
& \text { stride } 3=>(7-3) / / 3+1=2
\end{aligned}
$$

Activation function: ReLU

ReLU

(Rectified Linear Unit)

$$
f(x)=\max (0, x)
$$

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than sigmoid in practice
- Differentiable? Yes, if we fix $f^{\prime}(0)$

Pooling

- Summarizing the input
- Max / average pooling: output the max / average of the input

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Pooling operation

MAX POOLING

Single depth slice

Deep neural networks: putting things together

- [[Conv + ReLU] x n + Pooling] x m
- A few fully connected (FC) layers at the end
- Output normalization + Loss function
- Training: mini-batch stochastic gradient descent
- Inference: use the (normalized) outputs

Deep neural networks: putting things together

- AlexNet: make it deep!
- VGGNet: smaller kernels + more layers
- GoogLeNet: multiple parallel branches
- ResNet: add skip connections

