
(Deep) Neural Networks
Summary

Yin Li
yin.li@wisc.edu

University of Wisconsin, Madison

slide 2

Key concepts of (deep) neural networks
• Modeling a single neuron
 Linear / Nonlinear Perception
 Limited power of a single neuron

• Connecting many neurons
 Neural networks

• Training of neural networks
 Loss functions
 Backpropagation on a computational graph

• Deep neural networks
 Convolution
 Activation / pooling
 Design of deep networks

slide 3

Modeling a single neuron
• Perceptron: 𝑎𝑎 = 𝑔𝑔(∑𝑑𝑑𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)
• Activation function 𝑔𝑔: identity, sigmoid, ReLU

…

1 𝑤𝑤0
𝑤𝑤1

𝑤𝑤𝐷𝐷𝑥𝑥𝐷𝐷

𝑥𝑥1
𝑎𝑎𝑔𝑔(�

𝑑𝑑

𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)𝑔𝑔(�
𝑑𝑑

𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)

slide 4

Limited power of one single neuron
• Perceptron: 𝑎𝑎 = 𝑔𝑔(∑𝑑𝑑𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)
• Activation function 𝑔𝑔: identity, sigmoid, ReLU

• Decision boundary linear even for nonlinear 𝑔𝑔
• Can not handle XOR problem

…

1 𝑤𝑤0
𝑤𝑤1

𝑤𝑤𝐷𝐷𝑥𝑥𝐷𝐷

𝑥𝑥1
𝑎𝑎𝑔𝑔(�

𝑑𝑑

𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)𝑔𝑔(�
𝑑𝑑

𝑤𝑤𝑑𝑑𝑥𝑥𝑑𝑑)

slide 5

Connecting many neurons:
multilayer perceptron

• Standard way to connect Perceptrons
• Example: 1 hidden layer, 1 output layer, depth = 2

𝑤𝑤11
(2)

𝑤𝑤21
(2)

𝑤𝑤31
(2)

𝑤𝑤12
(2)

𝑤𝑤22
(2)

𝑤𝑤32
(2)

𝑎𝑎1
2 = 𝑔𝑔 �

𝑑𝑑

𝑥𝑥𝑑𝑑𝑤𝑤1𝑑𝑑
(2)

𝑎𝑎2
2 = 𝑔𝑔 �

𝑑𝑑

𝑥𝑥𝑑𝑑𝑤𝑤2𝑑𝑑
(2)

𝑎𝑎3
2 = 𝑔𝑔 �

𝑑𝑑

𝑥𝑥𝑑𝑑𝑤𝑤3𝑑𝑑
(2)

𝑤𝑤1
(3)

𝑤𝑤2
(3)

𝑤𝑤3
(3)

𝑎𝑎 = 𝑔𝑔 �
𝑖𝑖

𝑎𝑎𝑖𝑖
2 𝑤𝑤𝑖𝑖

(3)

𝑥𝑥2

𝑥𝑥1

slide 6

A single layer in neural networks

𝑥𝑥2

𝑥𝑥1

• 𝒂𝒂 = 𝑔𝑔 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

slide 7

A single layer in neural networks

• 𝒂𝒂 = 𝑔𝑔 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃
• Work for any element-wise activation function 𝑔𝑔
• Work for any number of neurons
• Map an input 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛 to an output 𝒂𝒂 ∈ 𝑅𝑅𝑚𝑚

• 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛, 𝑾𝑾 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, 𝒃𝒃 ∈ 𝑅𝑅𝑚𝑚, 𝒂𝒂 ∈ 𝑅𝑅𝑚𝑚

• Also called a fully connected layer

()
m x n n x 1 m x 1

=+

m x 1

slide 8

Neural Networks
• What type of functions shall we consider for f?

Chair
Features

+ Decision
𝑓𝑓(𝑥𝑥; 𝜃𝜃)

Proposal: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Example: 𝐚𝐚 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔(𝒙𝒙;𝑾𝑾,𝒃𝒃)

slide 9

Output normalization: Sigmoid

• Normalize the output into
the range of (0,1)

• As a probability distribution
for a binary variable

• No parameters and
differentiable

Sigmoid

𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑥𝑥 =
1

1 + 𝑒𝑒−𝑥𝑥

slide 10

Output normalization: Softmax

• Normalize a vector such that
 Each element in the range of (0, 1)
 All elements sum to 1

• As a probability distribution for a
categorical variable (e.g., 𝑥𝑥 =
{1, …𝐾𝐾})

• No parameters and differentiable

Softmax

𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑎𝑎𝑥𝑥 𝑥𝑥𝑘𝑘 =
exp(𝑥𝑥𝑘𝑘)
∑𝑗𝑗 exp 𝑥𝑥𝑗𝑗

slide 11

Loss functions

• Classification
 Cross entropy loss
 C-way classification problem
 Often in combination with

sigmoid (binary) or softmax (C-
way)

• Regression
 L2 loss

𝐻𝐻 𝑦𝑦,𝑝𝑝 = −�
𝑗𝑗

𝑦𝑦𝑗𝑗log(𝑝𝑝𝑗𝑗)

𝐿𝐿2 𝑦𝑦, �𝑦𝑦 = �
𝑗𝑗

𝑦𝑦𝑗𝑗 − �𝑦𝑦𝑗𝑗
2

slide 12

Learning in neural networks
• Define a loss function

𝐸𝐸 =
1

|𝐷𝐷|
�
𝑥𝑥∈𝐷𝐷

𝐸𝐸𝑥𝑥

 𝑥𝑥: one training point in the training set 𝐷𝐷
 𝑎𝑎: the output for the training point 𝑥𝑥
 𝑦𝑦: the binary label for 𝑥𝑥

• Optimize all the weights 𝑤𝑤 on all the edges
 Apparent difficulty: how to update the weights for

the hidden units?
 It turns out to be OK: we can still do gradient

descent. The trick you need is the chain rule
 The algorithm is known as back-propagation

slide 13

Mini-batch stochastic gradient descent
• Select a learning rate 𝛼𝛼 > 0
• Initialize the model parameters (edge weights) 𝑤𝑤(0)

• For 𝑠𝑠 = 1, 2, …
 Randomly sample a subset �𝐷𝐷 from 𝐷𝐷

 Compute 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

(per sample gradients w.r.t. 𝑤𝑤) for
x ∈ �𝐷𝐷 using back-propagation

 Update the parameters

𝑤𝑤(𝑡𝑡) = 𝑤𝑤(𝑡𝑡−1) − 𝛼𝛼
1

|�𝐷𝐷|
�
𝑥𝑥∈�𝐷𝐷

𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝑤𝑤

• Repeat until 𝐸𝐸 converges

The key challenge is to compute 𝜕𝜕𝐸𝐸𝑥𝑥
𝜕𝜕𝜕𝜕

!

slide 14

Neural network as computational graph
• (Deep) Neural Network:

Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Tensor (Variable) Operation+

𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝑛𝑛 𝑔𝑔2 𝒙𝒙2;𝜽𝜽2 𝑔𝑔1 𝒙𝒙1;𝜽𝜽1x a
𝑥𝑥𝑛𝑛 𝑥𝑥2 𝑥𝑥1

𝜃𝜃𝑛𝑛 𝜃𝜃2 𝜃𝜃1

slide 15

Neural network as computational graph
• 𝒂𝒂 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃
• Decompose functions into atomic operations
• Separate data (variables) and computing (operations)
• Known as a computational graph

∗
x

W

+

b

a

slide 16

Neural network as computational graph
• Differentiable operations
• Forward / backward

𝑔𝑔 𝒙𝒙;𝜽𝜽x

𝜽𝜽

z

𝜕𝜕𝒛𝒛
𝜕𝜕𝒙𝒙

𝜕𝜕𝒛𝒛
𝜕𝜕𝜽𝜽

slide 17

Neural network: forward propagation
• Compute the output of the network

∗
x

W

+

b

a

𝑧𝑧1 𝑧𝑧2

slide 18

Neural network: backward propagation

𝜕𝜕𝐸𝐸
𝜕𝜕𝑾𝑾

=
𝜕𝜕𝐸𝐸
𝜕𝜕𝒛𝒛𝟏𝟏

𝜕𝜕𝒛𝒛𝟏𝟏
𝜕𝜕𝑾𝑾

• Define a loss function 𝐸𝐸
• Gradient to a variable =
gradient on the top x gradient from the current operation

∗
x

W

+

b

a

𝑧𝑧1 𝑧𝑧2

slide 19

Deep neural networks
• Deep Learning: Composing a set of (nonlinear)

functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

• Each of the function g is represented using a layer of
a neural network

• Key element: 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

• Convolution

• Activation functions

• Pooling

slide 20

Convolution
• Given array 𝑢𝑢𝑡𝑡 and 𝑤𝑤𝑡𝑡, their convolution is a function
𝑠𝑠𝑡𝑡

• Written as

• When 𝑢𝑢𝑡𝑡 or 𝑤𝑤𝑡𝑡 is not defined, assumed to be 0
• Multiply 𝑤𝑤𝑡𝑡 to every sliding window of 𝑢𝑢𝑡𝑡 and sum up

𝑠𝑠𝑡𝑡 = �
𝑎𝑎=−∞

+∞

𝑢𝑢𝑎𝑎𝑤𝑤𝑡𝑡−𝑎𝑎

𝑠𝑠 = 𝑢𝑢 ∗ 𝑤𝑤 or 𝑠𝑠𝑡𝑡 = 𝑢𝑢 ∗ 𝑤𝑤 𝑡𝑡

slide 21

Convolution

a b c d e f

x y z

xb+yc+zd
𝑤𝑤= [z, y, x]
𝑢𝑢 = [a, b, c, d, e, f]

𝑠𝑠3

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟏𝟏 𝒖𝒖𝟐𝟐 𝐮𝐮𝟑𝟑

slide 22

Convolution

a b c d e f

x y z

xc+yd+ze
𝑠𝑠4

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟐𝟐 𝒖𝒖𝟑𝟑 𝐮𝐮𝟒𝟒

slide 23

Convolution
• A linear operation
• Can be written as matrix vector product

𝑤𝑤= [z, y, x], 𝑢𝑢 = [a, b, c, d, e, f]

slide 24

Gradient of convolution

𝑤𝑤= [z, y, x] 𝑢𝑢 = [a, b, c, d, e, f] 𝑠𝑠 = 𝑢𝑢 ∗ 𝑤𝑤

y z

x y z

x y z

x y z

x y z

x y

a

b

c

d

e

f

𝒔𝒔𝟏𝟏
𝒔𝒔𝟐𝟐
𝒔𝒔𝟑𝟑
𝒔𝒔𝟒𝟒
𝒔𝒔𝟓𝟓
𝒔𝒔𝟔𝟔

=

𝑠𝑠 = 𝑢𝑢 ∗ 𝑤𝑤
= 𝑊𝑊𝑢𝑢

𝑠𝑠 𝑊𝑊 𝑢𝑢

𝜕𝜕𝑠𝑠
𝜕𝜕𝑢𝑢

= 𝑊𝑊

slide 25

Gradient of convolution

𝑤𝑤= [z, y, x] 𝑢𝑢 = [a, b, c, d, e, f] 𝑠𝑠 = 𝑤𝑤 ∗ 𝑢𝑢

b a

c b a

d c b

e d c

f e d

f e

z

y

x

𝒔𝒔𝟏𝟏
𝒔𝒔𝟐𝟐
𝒔𝒔𝟑𝟑
𝒔𝒔𝟒𝟒
𝒔𝒔𝟓𝟓
𝒔𝒔𝟔𝟔

=

𝑠𝑠 𝑈𝑈 𝑤𝑤

𝜕𝜕𝑠𝑠
𝜕𝜕𝑤𝑤

= 𝑈𝑈

slide 26

Convolution with stride
• Stride: the step size of the sliding window

N

N

F

F

Valid Output size:
(N - F) // stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)//1 + 1 = 5
stride 2 => (7 - 3)//2 + 1 = 3
stride 3 => (7 - 3)//3 + 1 = 2

slide 27

Activation function: ReLU

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than
sigmoid in practice

• Differentiable? Yes, if we fix
𝑓𝑓𝑓 0

slide 28

Pooling
• Summarizing the input
• Max / average pooling: output the max / average of

the input

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

slide 29

Pooling operation

slide 30

Deep neural networks:
putting things together

• [[Conv + ReLU] x n + Pooling] x m

• A few fully connected (FC) layers at the end

• Output normalization + Loss function

• Training: mini-batch stochastic gradient descent

• Inference: use the (normalized) outputs

slide 31

Deep neural networks:
putting things together

• AlexNet: make it deep!

• VGGNet: smaller kernels + more layers

• GoogLeNet: multiple parallel branches

• ResNet: add skip connections

	Slide Number 1
	Key concepts of (deep) neural networks
	Modeling a single neuron
	Limited power of one single neuron
	Connecting many neurons: �multilayer perceptron
	A single layer in neural networks
	A single layer in neural networks
	Neural Networks
	Output normalization: Sigmoid
	Output normalization: Softmax
	Loss functions
	Learning in neural networks
	Mini-batch stochastic gradient descent
	Neural network as computational graph
	Neural network as computational graph
	Neural network as computational graph
	Neural network: forward propagation
	Neural network: backward propagation
	Deep neural networks
	Convolution
	Convolution
	Convolution
	Convolution
	Gradient of convolution
	Gradient of convolution
	Convolution with stride
	Activation function: ReLU
	Pooling
	Pooling operation
	Deep neural networks: �putting things together
	Deep neural networks: �putting things together

