Machine Learning Part II		
Nov 5:	Machine Learning: Perceptron	slides
Nov 10:	Machine Learning: Neural Network 1	slides
	HW7 DUE	
	(TENTATIVE) HW8 RELEASED (REGRESSION)	
Nov 12:	Machine Learning: Neural Network 2	slides
Nov 17:	Machine Learning: Deep Learning 1	slides,
	(TENTATIVE) HW8 DUE	
	(TENTATIVE) HW9 RELEASED (NEURAL NETWORK)	
Nov 19:	Machine Learning: Deep Learning 2	slides
Nov 24:	Machine Learning: Deep Learning 3	slides
	(TENTATIVE) HW9 DUE	
Nov 26:	Happy Thanksgiving!	
Dec 1:	Machine Learning: Reinforcement Learning	slides
	(TENTATIVE) HW10 RELEASED (DEEP LEARNING)	
Dec 3:	Machine Learning: Part II Summary	slides

Neural Networks Part 0: Perceptron

Yin Li

yin.li@wisc.edu University of Wisconsin, Madison

[Based on slides from Yingyu Liang, Jerry Zhu]

Example task

Indoor

Experience/Data: images with labels

outdoor

Featured designed for the example task

- Featured designed for the example task
- Supervised learning for a decision function y = f(x)

- What types of features shall we consider?
 - Color histogram, bag of words, …
- What type of decision functions shall we consider?
 - Naïve Bayes, linear models, KNN, …

- More complicated tasks: hard to design
- Would like to learn features

- What if we only learn a single function?
 - Directly mapping from the data to the label
 - Combining features and the decision function
 - Defined by its parameters θ
- What type of functions shall we consider for *f*?

Motivation II: neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units

Motivation II: neuroscience

- Human brain: 100, 000, 000, 000 neurons
- Each neuron receives input from 1,000 others
- Impulses arrive simultaneously
- Added together*
 - an impulse can either
 increase or decrease the
 possibility of nerve pulse firing

- If sufficiently strong, a nerve pulse is generated
- The pulse forms the input to other neurons.
- The interface of two neurons is called a synapse

Motivation II: neuroscience

- Hierarchical information processing
- Visual cortex has many areas that forms a hierarchy
- Outputs of one area as inputs of another one
- Gradually build up more complex concepts

Neural Networks / Deep Learning

• What type of functions shall we consider for f?

Proposal: Composing a set of (nonlinear) functions g $f(data; \theta) = g_1(\dots g_{n-1}(g_n(data; \theta_n), \theta_{n-1}) \dots, \theta_1)$

Successful applications

Computer vision: Image Generation

Slides from Kaimin He, MSRA

Successful applications

NLP: Question & Answer

- I: Jane went to the hallway.
- I: Mary walked to the bathroom.
- I: Sandra went to the garden.
- I: Daniel went back to the garden.
- I: Sandra took the milk there.
- Q: Where is the milk?
- A: garden

Figures from the paper "Ask Me Anything: Dynamic Memory Networks for Natural Language Processing ", by Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Richard Socher

Successful applications

• Game: AlphaGo

Outline

- A single neuron
 - Linear perceptron
 - Non-linear perceptron
 - Learning of a single perceptron
 - The power of a single perceptron
- Neural network: a network of neurons
 - Layers, hidden units
 - Learning of neural network: backpropagation
 - The power of neural network
 - Issues
- Deep learning: deep neural networks
- Everything revolves around gradient descent

Linear perceptron

- Perceptron = a math model for a single neuron
- Input: x_1, \dots, x_D (signal from other neurons)
- Weights: w_1, \dots, w_D (dendrites, can be negative)
- We sneak in a constant (bias term) $x_0 = 1$, with some weight w_0
- Activation function: linear (for the time being)

$$a = w_0 + w_1 * x_1 + \dots + w_D * x_D$$

This is the output of a linear perceptron

- Training data $\{(X_1, y_1), ..., (X_N, y_N)\}$
- X_1 is a vector: $(x_{11}, ..., x_{1D})$, so are $X_2 ... X_N$
- y_1 is a real-valued output, so are $y_2 \dots y_N$
- Goal: learn the weights $w_0, ..., w_D$, so that given input X_i , the output of the perceptron a_i is close to y_i
- Define "close":

$$E = \frac{1}{2} \sum_{i} (a_i - y_i)^2$$

- *E* is the "error". Given the training set, it is a function of w_0, \ldots, w_D .
- Minimize E: unconstrained optimization with variables w_0, \dots, w_D . Exactly linear regression.

- Gradient descent: $W \leftarrow W \alpha \nabla E(W)$
- α is a small constant, "learning rate" = step size
- The gradient descent rule:

$$E(W) = \frac{1}{2} \sum_{i} (a_i - y_i)^2$$
$$\frac{\partial E}{\partial w_d} = \sum_{i} (a_i - y_i) \frac{\partial a_i}{\partial w_d}$$

- Gradient descent: $W \leftarrow W \alpha \nabla E(W)$
- α is a small constant, "learning rate" = step size
- The gradient descent rule:

$$E(W) = \frac{1}{2} \sum_{i} (a_i - y_i)^2$$
$$\frac{\partial E}{\partial w_d} = \sum_{i} (a_i - y_i) \frac{\partial a_i}{\partial w_d}$$

with $a_i = w_0 + w_1 * x_{i1} + w_2 * x_{i2} + \cdots + w_D x_{iD}$

$$\Rightarrow \frac{\partial E}{\partial w_d} = \sum_i (a_i - y_i) \, x_{id}$$

- Gradient descent: $W \leftarrow W \alpha \nabla E(W)$
- α is a small constant, "learning rate" = step size
- The gradient descent rule:

$$E(W) = \frac{1}{2} \sum_{i} (a_i - y_i)^2$$
$$\frac{\partial E}{\partial w_d} = \sum_{i} (a_i - y_i) x_{id}$$
$$w_d \leftarrow w_d - \alpha \sum_{i} (a_i - y_i) x_{id}$$

- Repeat until *E* converges.
- E is convex in W: there is a unique global minimum

Visualization of gradient descent

Visualization of gradient descent

Visualization of gradient descent

The (limited) power of linear perceptron

Linear perceptron is just

a = WX

- where X is the input vector, augmented by $x_0 = 1$
- It can represent any linear function in D + 1 dimensional space... but that's it
- In particular, it won't be a nice fit to binary classification (y = 0 or y = 1)

Non-linear perceptron

 Can you see how to make logic AND, OR, NOT with such a perceptron?

Non-linear perceptron

Change the activation function: use a step function

a = g(w₀ + w₁ * x₁ + ... + w_D * x_D)

g(h) = 0, if h < 0; g(h) = 1 if h≥0

• AND: $w_1 = w_2 = 1, w_0 = -1.5$ • OR: $w_1 = w_2 = 1, w_0 = -0.5$ • NOT: $w_1 = -1, w_0 = 0.5$ • NOT: $w_1 = -1, w_0 = 0.5$ • NOT: $w_1 = -1, w_0 = 0.5$

Non-linear perceptron for AND

Change the activation function: use a step function

a = g(w₀ + w₁ * x₁ + ... + w_D * x_D)

g(h) = 0, if h < 0; g(h) = 1 if h≥0

Example Question

- Will you go to the festival?
- Go only if at least two conditions are favorable

All inputs are binary; 1 is favorable

Example Question

- Will you go to the festival?
- Go only if at least two conditions are favorable

All inputs are binary; 1 is favorable

Sigmod activation function: Our second non-linear perceptron

- The problem with LTU: step function is discontinuous, cannot use gradient descent
- Change the activation function (again): use a sigmoid function

 $g(x) = 1 / (1 + \exp(-x))$

also called a logistic function

Sigmod activation function: Our second non-linear perceptron

- The problem with LTU: step function is discontinuous, cannot use gradient descent
- Change the activation function (again): use a sigmoid function

$$g(x) = 1 / (1 + \exp(-x))$$

• Exercise: g'(x) =?

Sigmod activation function: Our second non-linear perceptron

- The problem with LTU: step function is discontinuous, cannot use gradient descent
- Change the activation function (again): use a sigmoid function

$$g(x) = 1 / (1 + \exp(-x))$$

• Exercise: g'(x) = g(x)(1 - g(x))

- Again we will minimize the error: $E(W) = \frac{1}{2} \sum_{i} (a_i - y_i)^2$
- Now $a_i = g(\Sigma_d w_d * x_{id})$ $\partial E / \partial w_d = \sum_i (a_i - y_i) a_i (1 - a_i) x_{id}$
- The sigmoid perceptron update rule

$$w_d \leftarrow w_d - \alpha \sum_i (a_i - y_i) a_i (1 - a_i) x_{id}$$

- α is a small constant, "learning rate" = step size
- Repeat until *E* converges

Non-linear perceptron for AND

 Change the activation function use a sigmoid function
 A = g(w₀ + w₁ * x₁ + ··· + w_D * x_D)

 g(x) = 1/(1 + exp(-x))

The (limited) power of non-linear perceptron

- Even with a non-linear sigmoid function, the decision boundary a perceptron can produce is still linear
 - Think about logistic regression
- AND, OR, NOT revisited

• How about XOR?

The (limited) power of non-linear perceptron

- Even with a non-linear sigmoid function, the decision boundary a perceptron can produce is still linear
- AND, OR, NOT revisited

• How about XOR?

This contributed to the first AI winter

Brief history of neural networks

(Multi-layer) neural network

