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Neural Networks
Part 0: Perceptron

Yin Li
yvin.li@wisc.edu

University of Wisconsin, Madison

[Based on slides from Yingyu Liang, Jerry Zhu] e 2
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Motivation I: learning features

¢ Example task

Experience/Data:
images with labels
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Motivation I: learning features

® Featured designed for the example task

Color Histogra
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Motivation I: learning features

® Featured designed for the example task
® Supervised learning for a decision function y = f(x)
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Motivation I: learning features

What types of features shall we consider?
= Color histogram, bag of words, ...

What type of decision functions shall we consider?
= Nalve Bayes, linear models, KNN, ...

|deal Ideal
Decision Indoor

Function
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Motivation I: learning features

¢ More complicated tasks: hard to design
® Would like to learn features
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Motivation I: learning features

What if we only learn a single function?
= Directly mapping from the data to the label
= Combining features and the decision function
= Defined by its parameters 6

What type of functions shall we consider for f?

Features
+ Decision Chair

f(data; )

slide 8



Motivation ll: neuroscience

® Inspirations from human brains
® Networks of simple and homogenous units

Biological Neuron

dendrites f kj/ 91'
tj—}f\_j—_’: ﬁ“}—nsmapus
nu:l&us—-_;.]_. - _E"':_E_‘l___—_ﬁq__ et

/@ D3

cell body
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Motivation ll: neuroscience

®  Human brain: 100, 000, 000, 000 neurons

¢ Each neuron receives input from 1,000 others

® Impulses arrive simultaneously ot oy

® Added together® /
VAL

Myelin sheath

= an impulse can either
Increase or decrease the
possibility of nerve pulse firing > e
¢ If sufficiently strong, a nerve pulse is generated
® The pulse forms the input to other neurons.
® The interface of two neurons is called a synapse

http://www.bris.ac.uk/synaptic/public/brainbasic.html slide 10



Motivation ll: neuroscience

® Hierarchical information processing

® Visual cortex has many areas that forms a hierarchy
¢ Qutputs of one area as inputs of another one

¢ Gradually build up more complex concepts

/ Receptive fields size Features
—
<//j @ IT A ' faces
l LGN__J T
gl( ke e V1 edges V4 objects
N—-lvaH j and lines 74
e V4~ 7 7 Y
7 = V2 o shapes
‘ //Qii‘ f;’ \\ 4
= _ edges
facc?, = shapes Vi \‘I’\ and lines
and objects visual field

https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full slide 11



Neural Networks / Deep Learning

What type of functions shall we consider for f?

Features
+ Decision Chair

f(data; )

Proposal: Composing a set of (nonlinear) functions g
f(data; 0) = g1(... gn—1(gn(data; 6,),0,_1) ..., 01)
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Successful applications

¢ Computer vision: Image Generation

Research

2 cakttalaeb‘l@ ; 45

dmlnq table O 879 -
‘n- B 9§ A o 0.9b7 A
1 a1\ s ~ s erson ; 1).935

Our results on COCO — too many objects, let’s check carefully!

*the original image is from the COCO dataset

". Iccv Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015.
__'._—' Shaoging Ren, Kaiming He, Ross Girshick, & lian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Slides from Kaimin He, MSRA

slide 13



Successful applications
® NLP: Question & Answer

Jane went to the hallway.

Mary walked to the bathroom.
Sandra went to the garden.
Daniel went back to the garden.
Sandra took the milk there.
Where is the milk?

garden

Figures from the paper “Ask Me Anything: Dynamic Memory Networks for Natural Language Processing 7,
by Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit lyyer, James Bradbury, Ishaan Gulrajani, Richard Socher
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Successful applications
Game: AlphaGo

THE INTERNATIONAL W JOURNAL OF SCIENCE

At last — a compu er program that
can beat a champion Go player PAGE484

ALL SYSTEMS GO

CONSERVATION RESEARCH ETHICS POPULAR SCIENCE E C

SONGBIRDS SAFEGU. i WHEN GENES

NEE i i |

L
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Outline

A single neuron
* Linear perceptron
= Non-linear perceptron
= | earning of a single perceptron
= The power of a single perceptron
Neural network: a network of neurons
= |Layers, hidden units
= | earning of neural network: backpropagation
= The power of neural network
= |ssues
Deep learning: deep neural networks
Everything revolves around gradient descent
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Linear perceptron

Perceptron = a math model for a single neuron
Input: x4, ..., xp (signal from other neurons)
Weights: w4, ..., wp (dendrites, can be negative)

We sneak in a constant (bias term) x, = 1, with some
weight w,
Activation function: linear (for the time being)
a = wy + wy*xxqg + ... + wp*xXxp
This is the output of a linear perceptron
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Learning In linear perceptron

Training data {(X1, y1), ---, Xn, Yn)}
X, is avector: (x4, ...,X1p), SO are X, ... Xy

y1 is a real-valued output, so are y, ... yy

Goal: learn the weights wy, ..., wp, so that given input
X;, the output of the perceptron q; is close to y;

Define “close™

E = %2 (a; — ;)
E is the “error”. Given the training set, it is a function
of wy, ..., Wp.

Minimize E: unconstrained optimization with variables
wy, ..., Wp. EXxactly linear regression.
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Learning In linear perceptron

Gradientdescent: W € W — oVE (W)
o is a small constant, “learning rate” = step size
The gradient descent rule:

EW) = Y% 2, (a; — ¥,)?

OF /0wy = ) (a; — y)da;/0wq
[
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Learning In linear perceptron

Gradientdescent: W € W — oVE (W)
o is a small constant, “learning rate” = step size
The gradient descent rule:

EW) = Y% 2, (a; — ¥,)?
OF /0wy = ) (a; = y)da;/0w,

i
with a; = wy + wy * x;1 +w, * X5 + - WpX;p

aWd z(al yl) Xid
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Learning In linear perceptron

Gradientdescent: W € W — oVE (W)
o is a small constant, “learning rate” = step size
The gradient descent rule:

EW) = % 2, (a; — ¥;)?
OE [ owg = 2.,(a; — ¥)Xiq
wyg €w; — a Zi(ai — Vi)Xig

Repeat until E converges.
E is convex in W: there is a unique global minimum
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Visualization of gradient descent
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Visualization of gradient descent
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Visualization of gradient descent
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The (limited) power of linear perceptron

Linear perceptron is just
a=WX

where X is the input vector, augmented by x, = 1

It can represent any linear functionin D + 1
dimensional space... but that's it

In particular, it won’t be a nice fit to binary
classification (y =0ory =1)

1+ O O O O

O-0—

/
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Non-linear perceptron

® Change the activation function: use a step function
a=gwy +wy*xxqy + ... + wp *xp)

o g(h) = (), ifh < 0; g(h) = 1if h>0 1,”(,5)

Vo

® Can you see how to make logic AND, OR, NOT with
such a perceptron?
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Non-linear perceptron

Change the activation function: use a step function
a=gwy +wy*xxqy + ... + wp *xp)
g(h) =0,ifh < 0; g(h) =1if h>0

AND: wy =w, =1,wy = —1.5
OR:wy =w, =1,wy = —0.5 Now we see the reason
NOT: w; = —1,wy = 0.5 for bias terms
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Non-linear perceptron for AND

® Change the activation function: use a step function
a =gwy + wyxx; + ... + wp *xp)
® g(h) =0,ifh < 0; g(h) =1if h>0

slide 28



Example Question

Will you go to the festival?
Go only if at least two conditions are favorable

Weather X1

Company x,

Proximity X3

All inputs are binary; 1 is favorable
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Example Question

Will you go to the festival?
Go only if at least two conditions are favorable

Weather X1

Company x,

Proximity X3

All inputs are binary; 1 is favorable

slide 30



Sigmod activation function:

Our second non-linear perceptron
® The problem with LTU: step function is discontinuous,
cannot use gradient descent

¢ Change the activation function (again): use a sigmoid
function

gx) = 1/(1 + exp(—x))
also called a logistic function

0.9
0.8

0.7

L3
0,4
0.3+
0.2+
2.1
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Sigmod activation function:

Our second non-linear perceptron
® The problem with LTU: step function is discontinuous,
cannot use gradient descent

¢ Change the activation function (again): use a sigmoid
function

gx) = 1/(1 + exp(—x))
® Exercise: g'(x) =7

1
0.9
0.8
0.7
0.6
L3
0,4
0.3+
0.2+
2.1
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Sigmod activation function:

Our second non-linear perceptron
® The problem with LTU: step function is discontinuous,
cannot use gradient descent

¢ Change the activation function (again): use a sigmoid
function

gx) =1/ + exp(—x))
® Exercise: g'(x) = g(x)(1 — g(x))

1
0.9
0.8
0.7
0.6
L3
0,4
0.3+
0.2+
2.1
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Learning in non-linear perceptron

Again we will minimize the error:
EW) = % 2 (a; — y))?
Now a; = g(Z,wq * Xiq)
OE/ owg = 2u(a; — ¥ a; (1 — a)xiq
The sigmoid perceptron update rule
wa € wg — a2y(a; — y)a; (1 — a;)xig
o is a small constant, “learning rate” = step size
Repeat until E converges
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Non-linear perceptron for AND

¢ Change the activation function use a sigmoid function
A=gwyg+wy*xx;+ -+ wp*xp)

© g(x) =1/(1+ exp(—x))

10 slide 35



The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

*= Think about logistic regression

AND, OR, NOT revisited

How about XOR?
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The (limited) power of non-linear perceptron

Even with a non-linear sigmoid function, the decision
boundary a perceptron can produce is still linear

AND, OR, NOT revisited

How about XOR?

wl|lalealae |~

== o= | =
o | ===

This contributed to the first Al winter
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Brief history of neural networks

Deep Neural Network

Pretrainin
Multi-layered m i ‘ W
1
F 9

XOR Femptl‘on
ADALINE (Backpropagation)
A &
r
Perceptron
i T N Derk Age (Al Winter”) _
Electronic Brain
1943 1957 1960 1969 1986 1985 2006

1940 1950 1960 1980 1990

5. McCulloch - W. Pitts F.Rosenblatt  B. Widrow - M. Hoff M. Minsky - 5. Papert D. Rumelhart G. Hinton - R. W|i|ams V. Vapnik - C. Cortes

AN X ok HOTX g -'fé\l | P Foward Activity ——jpe | % T T 1
1 b i ™ oty r——
o~ A A | @l o i@+ o0 i Lo e iy
g Kr [ X b : s - s ® IR I e

NN - /' P : | ’ e
] +] 2 1 1 . . " O ) '.__
E.r | \ f l \‘ | L) L/ L) af—— Backoward Ermor
* Adjustable Weights » Learmable Weights and Threshold « XOR Problem « Solution to nr_.nlineany separable problems  « Limitations of leaming priar knowledge < Hierarchical feature Leaming
« Weights are not Learned * Big computation, local optima and overfiting » Kernal function: Human Intervention
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(Multi-layer) neural network

¢ Given sigmoid perceptrons

-1d -2 U 2] 1

¢ Can you produce output like

SN

¢ which had non-linear decision boundarys

0 1 0 1 0
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