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Motivation I: learning features
• Example task

indoor outdoor

Experience/Data: 
images with labels

Indoor
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Motivation I: learning features
• Featured designed for the example task

Indoor 0

Extract 
features
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Motivation I: learning features
• Featured designed for the example task
• Supervised learning for a decision function

Indoor 0

Extract 
features

𝑦𝑦 = 𝑓𝑓(𝑥𝑥)
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Motivation I: learning features
• What types of features shall we consider?
 Color histogram, bag of words, …

• What type of decision functions shall we consider?
 Naïve Bayes, linear models, KNN, …

Ideal
Feature
Extractor

Ideal
Decision
Function

Indoor
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Motivation I: learning features
• More complicated tasks: hard to design
• Would like to learn features
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Motivation I: learning features
• What if we only learn a single function? 
 Directly mapping from the data to the label
 Combining features and the decision function
 Defined by its parameters 𝜃𝜃

• What type of functions shall we consider for f?

Chair
Features

+ Decision
𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ; 𝜃𝜃)
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Motivation II: neuroscience
• Inspirations from human brains
• Networks of simple and homogenous units



slide 10

Motivation II: neuroscience
• Human brain: 100, 000, 000, 000 neurons
• Each neuron receives input from 1,000 others
• Impulses arrive simultaneously
• Added together*
 an impulse can either 
increase or decrease the 
possibility of nerve pulse firing

• If sufficiently strong, a nerve pulse is generated
• The pulse forms the input to other neurons.  
• The interface of two neurons is called a synapse

http://www.bris.ac.uk/synaptic/public/brainbasic.html
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Motivation II: neuroscience
• Hierarchical information processing
• Visual cortex has many areas that forms a hierarchy 
• Outputs of one area as inputs of another one
• Gradually build up more complex concepts

https://www.frontiersin.org/articles/10.3389/fncom.2014.00135/full
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Neural Networks / Deep Learning
• What type of functions shall we consider for f?

Chair
Features

+ Decision
𝑓𝑓(𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ; 𝜃𝜃)

Proposal: Composing a set of (nonlinear) functions g

𝑓𝑓 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;𝜃𝜃 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑;𝜃𝜃𝑛𝑛 ,𝜃𝜃𝑛𝑛−1 … ,𝜃𝜃1)
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Successful applications
• Computer vision: Image Generation

Slides from Kaimin He, MSRA
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Successful applications
• NLP: Question & Answer

Figures from the paper “Ask Me Anything: Dynamic Memory Networks for Natural Language Processing ”,
by Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Richard Socher
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Successful applications
• Game: AlphaGo
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Outline
• A single neuron
 Linear perceptron
 Non-linear perceptron
 Learning of a single perceptron
 The power of a single perceptron

• Neural network: a network of neurons
 Layers, hidden units
 Learning of neural network: backpropagation
 The power of neural network
 Issues

• Deep learning: deep neural networks
• Everything revolves around gradient descent
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Linear perceptron
•

…

1
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Learning in linear perceptron
•



slide 19

Learning in linear perceptron

𝜕𝜕𝐸𝐸/𝜕𝜕𝑤𝑤𝑑𝑑 = �
𝑖𝑖

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝜕𝜕𝑑𝑑𝑖𝑖/𝜕𝜕𝑤𝑤𝑑𝑑
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Learning in linear perceptron

𝜕𝜕𝐸𝐸/𝜕𝜕𝑤𝑤𝑑𝑑 = �
𝑖𝑖

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝜕𝜕𝑑𝑑𝑖𝑖/𝜕𝜕𝑤𝑤𝑑𝑑

⇒
𝜕𝜕𝐸𝐸
𝜕𝜕𝑤𝑤𝑑𝑑

= �
𝑖𝑖

𝑑𝑑𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖𝑑𝑑

with 𝑑𝑑𝑖𝑖 = 𝑤𝑤0 + 𝑤𝑤1 ∗ 𝑥𝑥𝑖𝑖1 +𝑤𝑤2 ∗ 𝑥𝑥𝑖𝑖2 + ⋯𝑤𝑤𝐷𝐷𝑥𝑥𝑖𝑖𝐷𝐷
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Learning in linear perceptron
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Visualization of gradient descent
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Visualization of gradient descent
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Visualization of gradient descent
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The (limited) power of linear perceptron
•

1
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Non-linear perceptron
•

…

1
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Non-linear perceptron
•

…

1

Now we see the reason 
for bias terms
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Non-linear perceptron for AND
•
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Example Question

?
Weather

Company

Proximity

• Will you go to the festival? 
• Go only if at least two conditions are favorable

All inputs are binary; 1 is favorable
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Example Question

Weather

Company

Proximity

• Will you go to the festival? 
• Go only if at least two conditions are favorable

All inputs are binary; 1 is favorable

-1.5
1

1

1
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Sigmod activation function:
Our second non-linear perceptron

•

also called a logistic function
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Sigmod activation function:
Our second non-linear perceptron

•
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Sigmod activation function:
Our second non-linear perceptron

•
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Learning in non-linear perceptron
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Non-linear perceptron for AND
• Change the activation function use a sigmoid function

𝐴𝐴 = 𝑔𝑔(𝑤𝑤0 + 𝑤𝑤1 ∗ 𝑥𝑥1 + ⋯+ 𝑤𝑤𝐷𝐷 ∗ 𝑥𝑥𝐷𝐷)
• 𝑔𝑔(𝑥𝑥) = 1/(1 + exp(−𝑥𝑥))

?
?

?
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The (limited) power of non-linear perceptron
• Even with a non-linear sigmoid function, the decision 

boundary a perceptron can produce is still linear
 Think about logistic regression

• AND, OR, NOT revisited

• How about XOR?
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The (limited) power of non-linear perceptron
• Even with a non-linear sigmoid function, the decision 

boundary a perceptron can produce is still linear

• AND, OR, NOT revisited

• How about XOR?

• This contributed to the first AI winter
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Brief history of neural networks
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(Multi-layer) neural network
• Given sigmoid perceptrons

• Can you produce output like 

• which had non-linear decision boundarys

0                1                    0                     1               0
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