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We are given a set of documents x1, . . . , xn, with the associated class labels y1, . . . , yn. We want to learn
a model that will predict the label y for any future document x. This task is known as classification. Naive
Bayes is one classification method.

1 Naive Bayes Classifier

Let each document be represented by x = (c1, . . . , cv)> the word count vector, otherwise known as bag of
word representation. We assume within each class y, the probability of a document follows the multinomial
distribution with parameter θy:

p(x|y) ∝
v∏

w=1

θcwyw. (1)

The log likelihood is
log p(x|y) = x> log θy + const. (2)

Note different classes have different θy’s. Also note that the multinomial distribution assume conditional
independence of feature dimensions 1, . . . , v given the class y. We know this is not true in reality, and more
sophisticated models would assume otherwise. For this reason, such assumption on independence of features
is known as the näıve Bayes assumption.

If we know p(x|y) and p(y) for all classes, classification is done via the Bayes rule:

y∗ = arg max
y

p(y|x) (3)

= arg max
y

p(x|y)p(y)

p(x)
(4)

= arg max
y

p(x|y)p(y) (5)

= arg max
y

x> log θy + log p(y), (6)

The process of computing the conditional distribution p(y|x) of the unknown variable (y) given observed
variables (x) is called inference. Making classification predictions given p(x|y), p(y), and x is called inference.

Where do we get p(x|y) and p(y)? These are the parameters of the model, and we learn them from the
training set. Given a training set {(x1, y1), . . . , (xn, yn)}, training or parameter learning involves finding the
best parameters Θ = {π, θ1, . . . , θC}. Our complete model is p(y = j) = πj , and p(x|y = j) = Mult(x; θj) ∝∏V

w=1 θ
xw
jw . For simplicity we use the MLE here, but MAP is common too. We maximize the joint (log)
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likelihood of the training set:

` = log p((x, y)1:n|Θ) ; hide Θ below (7)

= log

n∏
i=1

p(xi, yi) (8)

=

n∑
i=1

log p(xi, yi) (9)

=

n∑
i=1

log p(yi) + log p(xi|yi). (10)

We can formulate this as a constrained optimization problem,

max
Θ

` (11)

s.t.
∑C

j=1 πj = 1, C is the number of classes (12)∑v
w=1 θjw = 1,∀j = 1 . . . C. (13)

It is easy to solve it using Lagrange multipliers and arrive at

πj =

∑n
i=1[yi = j]

n
(14)

θjw =

∑
i:yi=j xiw∑

i:yi=j

∑V
u=1 xiu

. (15)

These MLEs are intuitive: they are the class frequency in the training set, and the word frequency within
each class.

Note that the concepts of inference and parameter learning described above are fairly general. The
only special thing is the näıve Bayes assumption (i.e., unigram language model for p(x|y)) which assumes
conditional independence of features. This makes it a Näıve Bayes classifier.

1.1 Naive Bayes as a Linear Classifier

Consider binary classification where y = 0 or 1. Our classification rule with arg max can equivalently be
expressed with log odds ratio

f(x) = log
p(y = 1|x)

p(y = 0|x)
(16)

= log p(y = 1|x)− log p(y = 0|x) (17)

= (log θ1 − log θ0)>x+ (log p(y = 1)− log p(y = 0)). (18)

The decision rule is to classify x with y = 1 if f(x) > 0, and y = 0 otherwise. Note for given parameters,
this is a linear function in x. That is to say, the Naive Bayes classifier induces a linear decision boundary in
feature space X . The boundary takes the form of a hyperplane, defined by f(x) = 0.

1.2 Naive Bayes as a Generative Model

A generative model is a probabilistic model which describe the full generation process of the data, i.e. the
joint probability p(x, y). Our Naive Bayes model consists of p(y) and p(x|y), and does just that: One can
generate data (x, y) by first sample y ∼ p(y), and then sample word counts from the multinomial p(x|y).

There is another family of models known as discriminative models, which do not model p(x, y). Instead,
they directly model the conditional p(y|x), which is directly related to classification. We will see our first
discriminative model when we discuss logistic regression.
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1.3 Naive Bayes as a Special Case of Bayes Networks

A Bayes Network is a directed graph that represent a family of probability distributions. This is covered in
detail in [cB] Chapter 8.1, 8.2. Outline:

• nodes: each node is a random variable. We have one y node, and v xw nodes.

• directed edges: No directed cycles allowed, i.e. must be a DAG. For naive Bayes, from y to xw.

• meaning: the joint probability on all nodes s1:K is factorized in a particularly form

p(s) =

K∏
i=1

p(si|pa(si)), (19)

where pa(si) are the parents of si. For naive Bayes, p(x1:v, y) = p(y)
∏v

i=1 p(xi|y).

• observed nodes: nodes with known values, e.g. x1:v. Shaded.

• plate: a lazy way to duplicate the node (and associated edges) multiple times. Our x1:v can be
condensed into a plate.
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