
Linear Models for Supervised
Learning

CS 540
Yingyu Liang

Supervised Learning

Example: image classification
Label: indoor Label: outdoor

learning (i.e.,training)

Raw training data Raw test data

testing
performance

Label: outdoor Label: indoor

Training data Test data𝑥𝑥1 = 0.19, 0.23, … ,𝑦𝑦1 = +1
𝑥𝑥2 = 0.51, 0.33, … ,𝑦𝑦2 = −1

...

𝑥𝑥𝑥1 = 0.11, 0.13, … ,𝑦𝑦𝑥1 = +1
𝑥𝑥𝑥2 = 0.41, 0.35, … ,𝑦𝑦𝑥2 = −1

...

Feature extraction Feature extraction

Supervised Learning

• Input: training data set 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
• Output: model/function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) learned on the training data
• Goal: learn 𝑓𝑓 with good performance on future data

Supervised Learning

• Input: training data set 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
• Output: model/function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) learned on the training data
• Goal: learn 𝑓𝑓 with good performance on future data

Typically:
• Performance of 𝑓𝑓 estimated on a test data set 𝑥𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑥𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛𝑥 .
• Assume both the training and test data are i.i.d. samples from an

unknown data distribution 𝐷𝐷𝑋𝑋𝑋𝑋
• Classification: discrete labels; Regression: continuous labels

Supervised Learning

• Input: training data set 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 : 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛
• Output: model/function 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) learned on the training data
• Goal: learn 𝑓𝑓 with good performance on future data

• Different kinds of functions correspond to different learning methods
• The focus of this lecture: linear models

Review: MLE and MAP

• Given 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 from distribution 𝐷𝐷𝜃𝜃 with unknown parameter 𝜃𝜃

• MLE: find 𝜃𝜃 that maximizes the likelihood

max
𝜃𝜃

𝑝𝑝 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝜃𝜃 = �
𝑖𝑖

𝑝𝑝 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝜃𝜃

• MAP: assume a prior 𝑝𝑝(𝜃𝜃) over 𝜃𝜃, find 𝜃𝜃 that maximizes the posterior

max
𝜃𝜃

𝑝𝑝(𝜃𝜃)𝑝𝑝 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝜃𝜃 = 𝑝𝑝(𝜃𝜃)�
𝑖𝑖

𝑝𝑝 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝜃𝜃

Review: Optimization

• For a differentiable function 𝐿𝐿 𝜃𝜃 , the local maxima/minima satisfy

∇𝐿𝐿 𝜃𝜃 = 0
• For a convex function, all local minima are global minima. So setting

the gradient to 0 gives the global minima.

Linear Regression

Linear regression in 1-dimension

• 𝑥𝑥 ∈ 𝑅𝑅: 1-dimension
• 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥: linear function in parameters 𝛽𝛽0 ,𝛽𝛽1

Terminologies:
• 𝑥𝑥 : input variable (also called independent, predictor, explanatory

variable)
• 𝑦𝑦 : output variable (also called dependent, response variable)

Example 1

𝒙𝒙 𝒚𝒚

0 1

1 1.5

4 3

𝑥𝑥

𝑦𝑦
3

1

2

1 2 3 40• Can just solve the equations:
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 0 = 1
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 1 = 1.5
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 4 = 3

𝛽𝛽0 = 1,
𝛽𝛽1 = 0.5

Example 2: with noise

𝒙𝒙 𝒚𝒚

0 1.1

1 1.4

4 3

• No solutions to the equations!
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 0 = 1.1
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 1 = 1.4
• 𝛽𝛽0 + 𝛽𝛽1 ∗ 4 = 3

𝑥𝑥

𝑦𝑦
3

1

2

1 2 3 40

Linear regression in 1-dimension

• Why we use linear functions? How to handle noise?
• Assumption on the data distribution: there are ground truth 𝛽𝛽0∗, 𝛽𝛽1∗ and

𝑦𝑦 = 𝛽𝛽0∗ + 𝛽𝛽1∗𝑥𝑥 + 𝜖𝜖
where 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2).

Linear regression in 1-dimension

• Training: Maximum Likelihood Estimate (=least squares estimate)
• Since the noise 𝜖𝜖 is Gaussian:

𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽0,𝛽𝛽1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝑝𝑝 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 𝛽𝛽0,𝛽𝛽1 = �
𝑖𝑖

𝑝𝑝(𝑥𝑥𝑖𝑖)
1
2𝜋𝜋

𝑙𝑙−
𝛽𝛽0+𝛽𝛽1𝑥𝑥𝑖𝑖−𝑦𝑦𝑖𝑖 2

2𝜎𝜎2

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝛽𝛽0,𝛽𝛽1 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 = 𝑛𝑛 log
1
2𝜋𝜋

+ �
𝑖𝑖

log 𝑝𝑝(𝑥𝑥𝑖𝑖) −�
𝑖𝑖

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

2𝜎𝜎2

So MLE leads to
�𝛽𝛽0,�𝛽𝛽1 = argmin𝛽𝛽0,𝛽𝛽1 �

𝑖𝑖

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

Linear regression in 1-dimension

• Training: Maximum Likelihood Estimate (=least squares estimate)
�𝛽𝛽0,�𝛽𝛽1 = argmin𝛽𝛽0,𝛽𝛽1 �

𝑖𝑖

𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

• Also called Ordinary Least Squares (OLS)
• Convex optimization
• Set gradient to 0 leads to closed-form solution

Gradient w.r.t. 𝛽𝛽0 is ∑𝑖𝑖 2 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0
Gradient w.r.t. 𝛽𝛽1 is ∑𝑖𝑖 2 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = 0

Linear regression in 1-dimension

• Set gradient to 0 leads to closed-form solution
Gradient w.r.t. 𝛽𝛽0 is ∑𝑖𝑖 2 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 = 0
𝑛𝑛𝛽𝛽0 + 𝛽𝛽1 ∑𝑖𝑖 𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 𝑦𝑦𝑖𝑖 = 0

𝛽𝛽0 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝑛𝑛

− 𝛽𝛽1
∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

𝛽𝛽0 = �𝑦𝑦 − 𝛽𝛽1�̅�𝑥 , where we define �̅�𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

, �𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝑛𝑛

Linear regression in 1-dimension

• Set gradient to 0 leads to closed-form solution

𝛽𝛽0 = �𝑦𝑦 − 𝛽𝛽1�̅�𝑥 , where we define �̅�𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

, �𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝑛𝑛

Gradient w.r.t. 𝛽𝛽1 is ∑𝑖𝑖 2 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = 0
∑𝑖𝑖 �𝑦𝑦 − 𝛽𝛽1�̅�𝑥 + 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 = 0
∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 𝛽𝛽1�̅�𝑥𝑥𝑥𝑖𝑖 + ∑𝑖𝑖 𝛽𝛽1𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 = 0
𝛽𝛽1 ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 �̅�𝑥𝑥𝑥𝑖𝑖 + ∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 = 0
𝛽𝛽1 = (∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖)/ ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 �̅�𝑥𝑥𝑥𝑖𝑖

Linear regression in 1-dimension

• Set gradient to 0 leads to closed-form solution

𝛽𝛽0 = �𝑦𝑦 − 𝛽𝛽1�̅�𝑥 , where we define �̅�𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

, �𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝑛𝑛

𝛽𝛽1 = (∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖)/ ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 �̅�𝑥𝑥𝑥𝑖𝑖
We have:
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − �̅�𝑥 2 = ∑𝑖𝑖(𝑥𝑥𝑖𝑖2 − 2𝑥𝑥𝑖𝑖�̅�𝑥 + �̅�𝑥2)

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 2𝑥𝑥𝑖𝑖�̅�𝑥 + 𝑛𝑛�̅�𝑥2

= ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 2𝑥𝑥𝑖𝑖�̅�𝑥 + ∑𝑖𝑖 𝑥𝑥𝑖𝑖�̅�𝑥
= ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 𝑥𝑥𝑖𝑖�̅�𝑥

Linear regression in 1-dimension

• Set gradient to 0 leads to closed-form solution

𝛽𝛽0 = �𝑦𝑦 − 𝛽𝛽1�̅�𝑥 , where we define �̅�𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖
𝑛𝑛

, �𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝑛𝑛

𝛽𝛽1 = (∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖)/ ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 �̅�𝑥𝑥𝑥𝑖𝑖
We have:
∑𝑖𝑖 𝑥𝑥𝑖𝑖 − �̅�𝑥 2 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖2 − ∑𝑖𝑖 𝑥𝑥𝑖𝑖�̅�𝑥

Similarly (please check it offline!):
∑𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − �𝑦𝑦) = ∑𝑖𝑖 𝑦𝑦𝑖𝑖𝑥𝑥𝑖𝑖 − ∑𝑖𝑖 �𝑦𝑦𝑥𝑥𝑖𝑖

Linear regression in 1-dimension

• Set gradient to 0 leads to closed-form solution
�𝛽𝛽0 = �𝑦𝑦 − �𝛽𝛽1�̅�𝑥 , where we define �̅�𝑥 = ∑𝑖𝑖 𝑥𝑥𝑖𝑖

𝑛𝑛
, �𝑦𝑦 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖

𝑛𝑛
�𝛽𝛽1 = ∑𝑖𝑖(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑖𝑖 − �𝑦𝑦) /∑𝑖𝑖 𝑥𝑥𝑖𝑖 − �̅�𝑥 2

Linear regression in 1-dimension

• Given the closed-form solution �𝛽𝛽0,�𝛽𝛽1, denote the prediction

�𝑦𝑦𝑖𝑖 = �𝛽𝛽0 + �𝛽𝛽1𝑥𝑥𝑖𝑖
• The residue on 𝑥𝑥𝑖𝑖 is 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖
• The residue sum of squares is ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − �𝑦𝑦𝑖𝑖 2

• Another way to evaluate the fit: compared to fit using a constant
• Best constant fit is �𝑦𝑦
• The coefficient of determination is 𝑟𝑟2 = 1 − ∑𝑖𝑖 𝑦𝑦𝑖𝑖− �𝑦𝑦𝑖𝑖 2

∑𝑖𝑖 𝑦𝑦𝑖𝑖− �𝑦𝑦 2

Example 2: revisit

𝒙𝒙 𝒚𝒚

0 1.1

1 1.4

4 3

• Plug in the closed-form solution:

• �̅�𝑥 = 5
3

, �𝑦𝑦 = 5.5
3

• �𝛽𝛽1 =
0−53 1.1−5.5

3 + 1−53 1.4−5.5
3 + 4−53 3−5.5

3

0−53
2
+ 1−53

2
+ 4−53

2 ≈ 0.4885, �𝛽𝛽0 = 5.5
3
− 5

3
�𝛽𝛽1 ≈ 1.019

• Can also compute residue ≈ 0.0188, and 𝑟𝑟2 ≈ 0.991

𝑥𝑥

𝑦𝑦
3

1

2

1 2 3 40

Linear regression in multi-dimension

• 𝑥𝑥 = 𝑥𝑥0 = 1, 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 ∈ 𝑅𝑅𝑝𝑝+1

• 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 = 𝛽𝛽𝑇𝑇𝑥𝑥,𝛽𝛽 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝 ∈ 𝑅𝑅𝑝𝑝+1: linear function in 𝛽𝛽

• Assumption on the data distribution: there is ground truth 𝛽𝛽∗ and

𝑦𝑦 = 𝛽𝛽∗ 𝑇𝑇𝑥𝑥 + 𝜖𝜖
where 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2).

Linear regression in multi-dimension

• Training: Maximum Likelihood Estimate (=Ordinary Least Squares)

�̂�𝛽 = argmin𝛽𝛽 �
𝑖𝑖

𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2

• Let 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×(𝑝𝑝+1) be a matrix where the 𝑖𝑖-th row is 𝑥𝑥𝑖𝑖
• Let 𝒚𝒚 ∈ 𝑅𝑅𝑛𝑛 be a vector where the 𝑖𝑖-th entry is 𝑦𝑦𝑖𝑖
• Then OLS is

�̂�𝛽 = argmin𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2
2

where 𝑣𝑣 2
2 = 𝑣𝑣𝑇𝑇𝑣𝑣 = ∑𝑖𝑖 𝑣𝑣𝑖𝑖2

Linear regression in multi-dimension

• Training: Maximum Likelihood Estimate (=Ordinary Least Squares)
min𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2

2

min𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 𝑇𝑇(𝒚𝒚 − 𝑋𝑋𝛽𝛽)

min𝛽𝛽 𝒚𝒚𝑇𝑇𝒚𝒚 − 2𝛽𝛽𝑇𝑇𝑋𝑋𝑇𝑇𝒚𝒚 + 𝛽𝛽𝑇𝑇𝑋𝑋𝑇𝑇𝑋𝑋𝛽𝛽
• Convex optimization. Set gradient to 0 leads to closed-form solution

Gradient w.r.t. 𝛽𝛽 is −2𝑋𝑋𝑇𝑇𝒚𝒚 + 2𝑋𝑋𝑇𝑇𝑋𝑋𝛽𝛽 = 0
• Suppose 𝑋𝑋𝑇𝑇𝑋𝑋 invertible, then �̂�𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 −1𝑋𝑋𝑇𝑇𝒚𝒚

What if 𝑋𝑋𝑇𝑇𝑋𝑋 not invertible?

Linear regression in multi-dimension

• Training: Maximum A Posteriori (leads to Ridge Regression)

• Assume prior 𝛽𝛽 ∼ 𝑁𝑁(0, 𝜎𝜎
2

𝜆𝜆
𝐼𝐼) for some 𝜆𝜆 > 0

• MAP leads to
min𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2

2 + 𝜆𝜆 𝛽𝛽 2
2

• Ridge Regression = OLS + ℓ2 regularization
• Convex optimization. Set gradient to 0 leads to closed-form solution

Gradient w.r.t. 𝛽𝛽 is −2𝑋𝑋𝑇𝑇𝒚𝒚 + 2𝑋𝑋𝑇𝑇𝑋𝑋𝛽𝛽 + 2𝜆𝜆𝛽𝛽 = 0
• 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝐼𝐼 is always invertible, then �̂�𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝐼𝐼 −1𝑋𝑋𝑇𝑇𝒚𝒚

Example 3

𝒙𝒙 𝜷𝜷∗ 𝑻𝑻𝒙𝒙 𝒚𝒚
(1,0,0) 1 1
(1,1,1) 11/6 2
(1,1,2) 13/6 7/3

• 𝛽𝛽∗ = [1, 1
2

, 1
3
]

• 𝑋𝑋 =
1 0 0
1 1 1
1 1 2

,𝒚𝒚 =
1
2

7/3

Example 3

𝒙𝒙 𝜷𝜷∗ 𝑻𝑻𝒙𝒙 𝒚𝒚 �𝒚𝒚
(1,0,0) 1 1 0.997
(1,1,1) 11/6 2 1.99
(1,1,2) 13/6 7/3 2.34

• 𝛽𝛽∗ = [1, 1
2

, 1
3
]

• 𝑋𝑋 =
1 0 0
1 1 1
1 1 2

,𝒚𝒚 =
1
2

7/3
• 𝜆𝜆 = 0.01, �̂�𝛽 ≈ [0.997,0.648,0.346]

Example 3

𝒙𝒙 𝜷𝜷∗ 𝑻𝑻𝒙𝒙 𝒚𝒚 �𝒚𝒚
(1,0,0) 1 1 1
(1,1,1) 11/6 2 2
(1,1,2) 13/6 7/3 2.33

• 𝛽𝛽∗ = [1, 1
2

, 1
3
]

• 𝑋𝑋 =
1 0 0
1 1 1
1 1 2

,𝒚𝒚 =
1
2

7/3
• 𝜆𝜆 = 0, �̂�𝛽 ≈ [1,0.667,0.333]

Example 3

𝒙𝒙 𝜷𝜷∗ 𝑻𝑻𝒙𝒙 𝒚𝒚 �𝒚𝒚
(1,0,0) 1 1 0.049
(1,1,1) 11/6 2 0.150
(1,1,2) 13/6 7/3 0.211

• 𝛽𝛽∗ = [1, 1
2

, 1
3
]

• 𝑋𝑋 =
1 0 0
1 1 1
1 1 2

,𝒚𝒚 =
1
2

7/3
• 𝜆𝜆 = 100, �̂�𝛽 ≈ [0.049,0.040,0.061]

Linear regression using nonlinear features

• Linear regression only needs to be linear in 𝛽𝛽
• Can use nonlinear features of the input
• Polynomial regression on input 𝑧𝑧

• let 𝑥𝑥 = (1, 𝑧𝑧, 𝑧𝑧2, 𝑧𝑧3, … , 𝑧𝑧𝑝𝑝)
• Function 𝑦𝑦 = 𝛽𝛽𝑇𝑇𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑧𝑧 + 𝛽𝛽2𝑧𝑧2 + … + 𝛽𝛽𝑝𝑝𝑧𝑧𝑝𝑝

• Higher order regression on input 𝑧𝑧 = (𝑧𝑧1, 𝑧𝑧2)
• let 𝑥𝑥 = 1, 𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧1𝑧𝑧2, 𝑧𝑧12, 𝑧𝑧22

• Function 𝑦𝑦 = 𝛽𝛽𝑇𝑇𝑥𝑥 = 𝛽𝛽0 + 𝛽𝛽1𝑧𝑧1 + 𝛽𝛽2𝑧𝑧2 + 𝛽𝛽3𝑧𝑧1𝑧𝑧2 + 𝛽𝛽4𝑧𝑧12 + 𝛽𝛽5𝑧𝑧22

• In general, for input 𝑧𝑧
• Let 𝑥𝑥 = (1,𝜙𝜙1(𝑧𝑧),𝜙𝜙2(𝑧𝑧),𝜙𝜙3(𝑧𝑧), … ,𝜙𝜙𝑝𝑝(𝑧𝑧)) for functions 𝜙𝜙𝑗𝑗
• Function 𝑦𝑦 = 𝛽𝛽0 + ∑𝑗𝑗 𝛽𝛽𝑗𝑗𝜙𝜙𝑗𝑗(𝑧𝑧)

Logistic Regression

Linear classification

• 𝑥𝑥 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦 ∈ {−1, +1}

• Intuition: use 𝜃𝜃𝑇𝑇𝑥𝑥
• 𝑦𝑦 = +1 if 𝜃𝜃𝑇𝑇𝑥𝑥 positive
• 𝑦𝑦 = −1 if 𝜃𝜃𝑇𝑇𝑥𝑥 negative

𝜃𝜃𝑇𝑇𝑥𝑥 = 0

Class +1

Class -1

𝜃𝜃𝑇𝑇𝑥𝑥 > 0

𝜃𝜃𝑇𝑇𝑥𝑥 < 0

Logistic regression

• 𝑥𝑥 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦 ∈ {−1, +1}

• Idea: squash 𝜃𝜃𝑇𝑇𝑥𝑥 to [0,1] so that it represents the probability 𝑦𝑦 = +1
𝑝𝑝 𝑦𝑦 = +1 𝑥𝑥 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥 =

1
1 + exp(−𝜃𝜃𝑇𝑇𝑥𝑥)

𝑝𝑝 𝑦𝑦 = −1 𝑥𝑥 = 1 − 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥 =
exp −𝜃𝜃𝑇𝑇𝑥𝑥

1 + exp −𝜃𝜃𝑇𝑇𝑥𝑥
=

1
1 + exp(𝜃𝜃𝑇𝑇𝑥𝑥)

where 𝜎𝜎 𝑧𝑧 = 1
1+exp(−𝑧𝑧)

is the logistic function

Logistic regression

• Training: Maximum Likelihood Estimate (on the conditional likelihood)

max
𝜽𝜽

�
𝒊𝒊

log 𝑝𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 ,𝜃𝜃

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖))

• When training data is linearly separable, MLE is bad
1. 𝜃𝜃 2 goes to infinity
2. There can be many solutions

Logistic regression

• Training: Maximum Likelihood Estimate (on the conditional likelihood)

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖))

• When training data is linearly separable, MLE is bad
1. 𝜃𝜃 2 goes to infinity
2. There can be many solutions

• To see 1, consider the simple example below

𝑥𝑥2 = +1𝑥𝑥1 = −1

𝑦𝑦1 = −1 𝑦𝑦2 = +1

Logistic regression

• Training: Maximum Likelihood Estimate (on the conditional likelihood)

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖))

• When training data is linearly separable, MLE is bad
1. 𝜃𝜃 2 goes to infinity
2. There can be many solutions

• To see 2, consider the figure
Class +1

Class -1

𝜃𝜃𝑇𝑇𝑥𝑥 > 0

𝜃𝜃𝑇𝑇𝑥𝑥 < 0

Logistic regression

• Training: Maximum A Posteriori

• Assume prior 𝛽𝛽 ∼ 𝑁𝑁(0, 1
𝜆𝜆
𝐼𝐼) for some 𝜆𝜆 > 0

• MAP leads to

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖)) +
𝜆𝜆
2

𝜃𝜃 2
2

• Convex optimization
• But no closed form solution; solve via (stochastic) gradient descent

Gradient descent

• Suppose we have optimization

min
𝜽𝜽

�
𝑖𝑖

𝑙𝑙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

• Regularized logistic regression: 𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃 = log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖)) + 𝜆𝜆
2𝑛𝑛

𝜃𝜃 2
2

• Ridge regression: 𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝛽𝛽 = 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 + 𝜆𝜆
𝑛𝑛
𝛽𝛽 2

2

• Gradient descent (GD) with step size 𝜂𝜂 > 0:
• Initialize 𝜃𝜃(0)

• For 𝑡𝑡 = 1,2, … , set 𝜃𝜃(𝑡𝑡) = 𝜃𝜃(𝑡𝑡−1) − 𝜂𝜂 ∑𝑖𝑖 ∇𝜃𝜃𝑙𝑙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃(𝑡𝑡−1))

Stochastic gradient descent

• Suppose we have optimization

min
𝜽𝜽

�
𝑖𝑖

𝑙𝑙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃)

• Regularized logistic regression: 𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃 = log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖)) + 𝜆𝜆
2𝑛𝑛

𝜃𝜃 2
2

• Ridge regression: 𝑙𝑙 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝛽𝛽 = 𝛽𝛽𝑇𝑇𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2 + 𝜆𝜆
𝑛𝑛
𝛽𝛽 2

2

• Stochastic gradient descent (SGD) with step size 𝜂𝜂 > 0:
• Initialize 𝜃𝜃(0)

• For 𝑡𝑡 = 1,2, … , randomly sample an 𝑖𝑖, and 𝜃𝜃(𝑡𝑡) = 𝜃𝜃(𝑡𝑡−1) − 𝜂𝜂𝑛𝑛∇𝜃𝜃𝑙𝑙(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 ,𝜃𝜃(𝑡𝑡−1))

Multi-class logistic regression

• 𝑥𝑥 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦 ∈ 1, 2, … ,𝐾𝐾
• Each class has parameter 𝜃𝜃𝑗𝑗 ∈ 𝑅𝑅𝑝𝑝+1

• Use softmax to squash (𝜃𝜃1𝑇𝑇𝑥𝑥,𝜃𝜃2𝑇𝑇𝑥𝑥, … ,𝜃𝜃𝐾𝐾𝑇𝑇𝑥𝑥) into probabilities:

𝑝𝑝 𝑦𝑦 = 𝑗𝑗|𝑥𝑥, {𝜃𝜃𝑘𝑘} =
exp(𝜃𝜃𝑗𝑗𝑇𝑇𝑥𝑥)

∑𝑘𝑘 exp(𝜃𝜃𝑘𝑘𝑇𝑇𝑥𝑥)
• Training by MLE:

max
𝜽𝜽

�
𝒊𝒊

log 𝑝𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 , {𝜃𝜃𝑘𝑘}

Multi-class logistic regression

• 𝑥𝑥 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦 ∈ 1, 2, … ,𝐾𝐾
• Each class has parameter 𝜃𝜃𝑗𝑗 ∈ 𝑅𝑅𝑝𝑝+1

• Use softmax to squash (𝜃𝜃1𝑇𝑇𝑥𝑥,𝜃𝜃2𝑇𝑇𝑥𝑥, … ,𝜃𝜃𝐾𝐾𝑇𝑇𝑥𝑥) into probabilities:

𝑝𝑝 𝑦𝑦 = 𝑗𝑗|𝑥𝑥, {𝜃𝜃𝑘𝑘} =
exp(𝜃𝜃𝑗𝑗𝑇𝑇𝑥𝑥)

∑𝑘𝑘 exp(𝜃𝜃𝑘𝑘𝑇𝑇𝑥𝑥)
• Training by MAP:

min
𝜽𝜽

�
𝒊𝒊

log 𝑝𝑝 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖 , {𝜃𝜃𝑘𝑘} +
𝜆𝜆
2
�
𝑘𝑘

𝜃𝜃𝑘𝑘 2
2

	Linear Models for Supervised Learning
	Supervised Learning
	Example: image classification
	Supervised Learning
	Supervised Learning
	Supervised Learning
	Review: MLE and MAP
	Review: Optimization
	Linear Regression
	Linear regression in 1-dimension
	Example 1
	Example 2: with noise
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Linear regression in 1-dimension
	Example 2: revisit
	Linear regression in multi-dimension
	Linear regression in multi-dimension
	Linear regression in multi-dimension
	Linear regression in multi-dimension
	Example 3
	Example 3
	Example 3
	Example 3
	Linear regression using nonlinear features
	Logistic Regression
	Linear classification
	Logistic regression
	Logistic regression
	Logistic regression
	Logistic regression
	Logistic regression
	Gradient descent
	Stochastic gradient descent
	Multi-class logistic regression
	Multi-class logistic regression

