Linear Models for Supervised Learning

CS 540

Yingyu Liang

Example: image classification



- Input: training data set $\{(x_i, y_i): 1 \le i \le n\}$
- Output: model/function y = f(x) learned on the training data
- Goal: learn *f* with good performance on future data

- Input: training data set $\{(x_i, y_i): 1 \le i \le n\}$
- Output: model/function y = f(x) learned on the training data
- Goal: learn f with good performance on future data

Typically:

- Performance of f estimated on a test data set $\{(x'_i, y'_i): 1 \le i \le n'\}$.
- Assume both the training and test data are i.i.d. samples from an unknown data distribution D_{XY}
- Classification: discrete labels; Regression: continuous labels

- Input: training data set $\{(x_i, y_i): 1 \le i \le n\}$
- Output: model/function y = f(x) learned on the training data
- Goal: learn *f* with good performance on future data

• The focus of this lecture: linear models

Review: MLE and MAP

- Given $\{(x_i, y_i)\}$ from distribution D_{θ} with unknown parameter θ
- MLE: find θ that maximizes the likelihood $\max_{\theta} p(\{(x_i, y_i)\} | \theta) = \prod_i p(x_i, y_i | \theta)$
- MAP: assume a prior $p(\theta)$ over θ , find θ that maximizes the posterior $\max_{\theta} p(\theta) p(\{(x_i, y_i)\} | \theta) = p(\theta) \prod_i p(x_i, y_i | \theta)$

Review: Optimization

• For a differentiable function $L(\theta)$, the local maxima/minima satisfy

 $\nabla L(\theta) = 0$

• For a convex function, all local minima are global minima. So setting the gradient to 0 gives the global minima.

Linear Regression

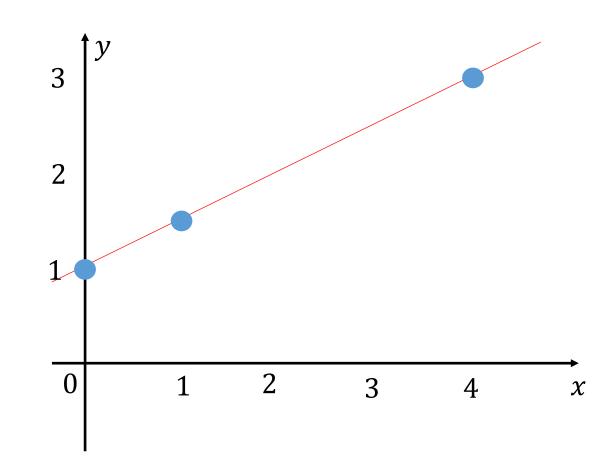
- $x \in R$: 1-dimension
- $y = f(x) = \beta_0 + \beta_1 x$: linear function in parameters β_0 , β_1

Terminologies:

- x : input variable (also called independent, predictor, explanatory variable)
- y : output variable (also called dependent, response variable)

Example 1			
x	У		
0	1		
1	1.5		
4	3		

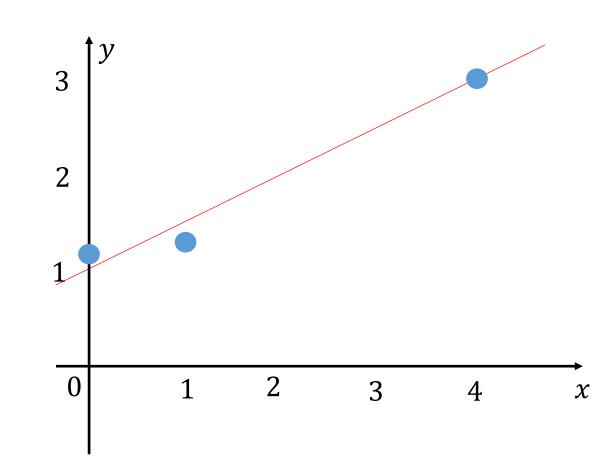
- Can just solve the equations:
- $\beta_0 + \beta_1 * 0 = 1$ $\beta_0 + \beta_1 * 1 = 1.5$ $\implies \begin{array}{l} \beta_0 = 1, \\ \beta_1 = 0.5 \end{array}$ $\beta_0 + \beta_1 * 4 = 3$



Example 2: with noise

x	у
0	1.1
1	1.4
4	3

- No solutions to the equations!
- $\bullet \beta_0 + \beta_1 * 0 = 1.1$
- $\beta_0 + \beta_1 * 1 = 1.4$
- $\bullet \beta_0 + \beta_1 * 4 = 3$



- Why we use linear functions? How to handle noise?
- Assumption on the data distribution: there are ground truth β_0^* , β_1^* and

$$y = \beta_0^* + \beta_1^* x + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

- Training: Maximum Likelihood Estimate (=least squares estimate)
- Since the noise ϵ is Gaussian:

$$likelihood(\beta_0, \beta_1 | \{x_i, y_i\}) = p(\{x_i, y_i\} | \beta_0, \beta_1) = \prod_i p(x_i) \frac{1}{\sqrt{2\pi}} e^{-\frac{(\beta_0 + \beta_1 x_i - y_i)^2}{2\sigma^2}}$$

 $loglikelihood(\beta_0, \beta_1 | \{x_i, y_i\}) = n \log \frac{1}{\sqrt{2\pi}} + \sum_i \log p(x_i) - \sum_i \frac{(\beta_0 + \beta_1 x_i - y_i)^2}{2\sigma^2}$

So MLE leads to

$$\widehat{\beta_0}, \widehat{\beta_1} = \operatorname{argmin}_{\beta_0, \beta_1} \sum_i (\beta_0 + \beta_1 x_i - y_i)^2$$

• Training: Maximum Likelihood Estimate (=least squares estimate)

$$\widehat{\beta_0}, \widehat{\beta_1} = \operatorname{argmin}_{\beta_0, \beta_1} \sum_i (\beta_0 + \beta_1 x_i - y_i)^2$$

- Also called Ordinary Least Squares (OLS)
- Convex optimization
- Set gradient to 0 leads to closed-form solution Gradient w.r.t. β_0 is $\sum_i 2(\beta_0 + \beta_1 x_i - y_i) = 0$ Gradient w.r.t. β_1 is $\sum_i 2(\beta_0 + \beta_1 x_i - y_i) x_i = 0$

• Set gradient to 0 leads to closed-form solution Gradient w.r.t. β_0 is $\sum_i 2(\beta_0 + \beta_1 x_i - y_i) = 0$ $n\beta_0 + \beta_1 \sum_i x_i - \sum_i y_i = 0$ $\beta_0 = \frac{\sum_i y_i}{n} - \beta_1 \frac{\sum_i x_i}{n}$ $\beta_0 = \bar{y} - \beta_1 \bar{x}$, where we define $\bar{x} = \frac{\sum_i x_i}{n}$, $\bar{y} = \frac{\sum_i y_i}{n}$

Set gradient to 0 leads to closed-form solution

 $\beta_{0} = \overline{y} - \beta_{1}\overline{x} \text{, where we define } \overline{x} = \frac{\sum_{i}x_{i}}{n}, \overline{y} = \frac{\sum_{i}y_{i}}{n}$ Gradient w.r.t. β_{1} is $\sum_{i} 2(\beta_{0} + \beta_{1}x_{i} - y_{i}) x_{i} = 0$ $\sum_{i}(\overline{y} - \beta_{1}\overline{x} + \beta_{1}x_{i} - y_{i}) x_{i} = 0$ $\sum_{i}\overline{y}x_{i} - \sum_{i}\beta_{1}\overline{x}x_{i} + \sum_{i}\beta_{1}x_{i}^{2} - \sum_{i}y_{i}x_{i} = 0$ $\beta_{1}(\sum_{i}x_{i}^{2} - \sum_{i}\overline{x}x_{i}) + \sum_{i}\overline{y}x_{i} - \sum_{i}y_{i}x_{i} = 0$ $\beta_{1} = (\sum_{i}y_{i}x_{i} - \sum_{i}\overline{y}x_{i})/(\sum_{i}x_{i}^{2} - \sum_{i}\overline{x}x_{i})$

Set gradient to 0 leads to closed-form solution

 $\beta_0 = \overline{y} - \beta_1 \overline{x}$, where we define $\overline{x} = \frac{\sum_i x_i}{n}$, $\overline{y} = \frac{\sum_i y_i}{n}$ $\beta_1 = (\sum_i y_i x_i - \sum_i \overline{y} x_i) / (\sum_i x_i^2 - \sum_i \overline{x} x_i)$ We have:

$$\begin{split} \sum_{i} (x_i - \bar{x})^2 &= \sum_{i} (x_i^2 - 2x_i \bar{x} + \bar{x}^2) \\ &= \sum_{i} x_i^2 - \sum_{i} 2x_i \bar{x} + n \bar{x}^2 \\ &= \sum_{i} x_i^2 - \sum_{i} 2x_i \bar{x} + \sum_{i} x_i \bar{x} \\ &= \sum_{i} x_i^2 - \sum_{i} x_i \bar{x} \end{split}$$

Set gradient to 0 leads to closed-form solution

 $\beta_0 = \bar{y} - \beta_1 \bar{x} \text{, where we define } \bar{x} = \frac{\sum_i x_i}{n}, \bar{y} = \frac{\sum_i y_i}{n}$ $\beta_1 = (\sum_i y_i x_i - \sum_i \bar{y} x_i) / (\sum_i x_i^2 - \sum_i \bar{x} x_i)$

We have:

 $\sum_{i} (x_i - \bar{x})^2 = \sum_{i} x_i^2 - \sum_{i} x_i \bar{x}$

Similarly (please check it offline!):

 $\sum_{i} (x_i - \bar{x})(y_i - \bar{y}) = \sum_{i} y_i x_i - \sum_{i} \bar{y} x_i$

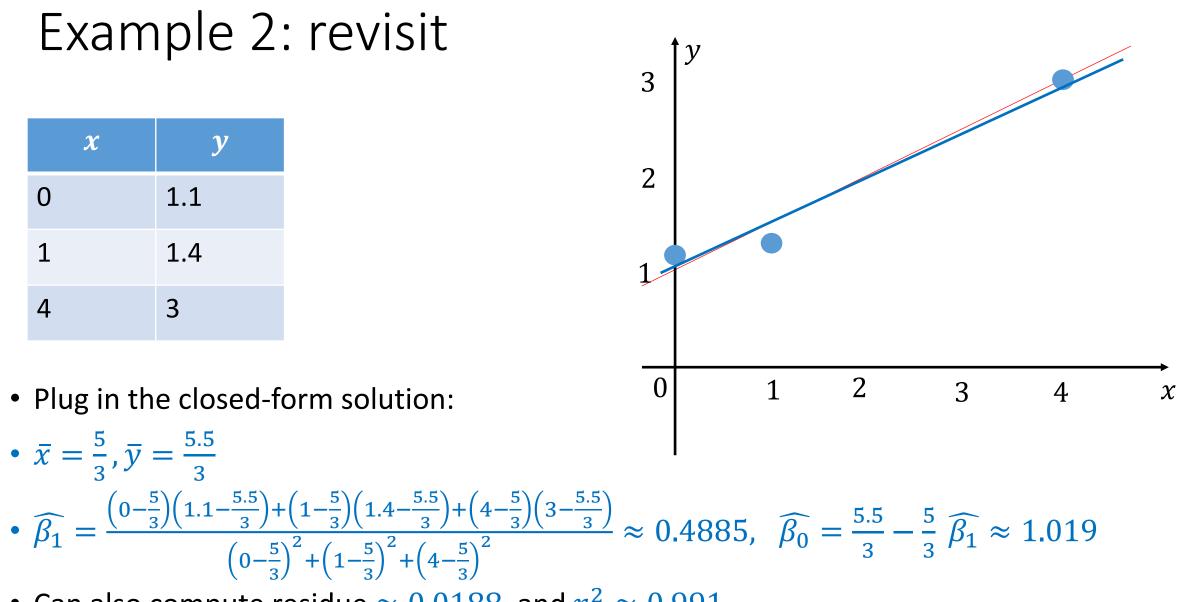
• Set gradient to 0 leads to closed-form solution

 $\widehat{\beta_0} = \overline{y} - \widehat{\beta_1} \overline{x} \text{, where we define } \overline{x} = \frac{\sum_i x_i}{n}, \overline{y} = \frac{\sum_i y_i}{n}$ $\widehat{\beta_1} = \sum_i (x_i - \overline{x})(y_i - \overline{y}) / \sum_i (x_i - \overline{x})^2$

• Given the closed-form solution $\widehat{\beta_0}$, $\widehat{\beta_1}$, denote the prediction

$$\hat{y}_i = \widehat{\beta_0} + \widehat{\beta_1} x_i$$

- The residue on x_i is $y_i \hat{y}_i$
- The residue sum of squares is $\sum_i (y_i \hat{y}_i)^2$
- Another way to evaluate the fit: compared to fit using a constant
- Best constant fit is \overline{y}
- The coefficient of determination is $r^2 = 1 \frac{\sum_i (y_i \hat{y}_i)^2}{\sum_i (y_i \bar{y})^2}$



• Can also compute residue ≈ 0.0188 , and $r^2 \approx 0.991$

•
$$x = (x_0 = 1, x_1, \dots, x_p) \in \mathbb{R}^{p+1}$$

• $y = f(x) = \beta^T x, \beta = (\beta_0, \beta_1, \dots, \beta_p) \in \mathbb{R}^{p+1}$: linear function in β

• Assumption on the data distribution: there is ground truth β^* and

 $y = (\beta^*)^T x + \epsilon$

where $\epsilon \sim N(0, \sigma^2)$.

• Training: Maximum Likelihood Estimate (=Ordinary Least Squares)

$$\hat{\beta} = \operatorname{argmin}_{\beta} \sum_{i} (\beta^T x_i - y_i)^2$$

- Let $X \in \mathbb{R}^{n \times (p+1)}$ be a matrix where the *i*-th row is x_i
- Let $y \in \mathbb{R}^n$ be a vector where the *i*-th entry is y_i
- Then OLS is

$$\hat{\beta} = \operatorname{argmin}_{\beta} \| \boldsymbol{y} - \boldsymbol{X} \beta \|_2^2$$

where $||v||_{2}^{2} = v^{T}v = \sum_{i} v_{i}^{2}$

• Training: Maximum Likelihood Estimate (=Ordinary Least Squares) $\min_{\beta} \|y - X\beta\|_{2}^{2}$

 $\min_{\beta} (\boldsymbol{y} - \boldsymbol{X}\beta)^T (\boldsymbol{y} - \boldsymbol{X}\beta)$

$$\min_{\beta} \boldsymbol{y}^T \boldsymbol{y} - 2\beta^T \boldsymbol{X}^T \boldsymbol{y} + \beta^T \boldsymbol{X}^T \boldsymbol{X}\beta$$

- Convex optimization. Set gradient to 0 leads to closed-form solution Gradient w.r.t. β is $-2X^T y + 2X^T X \beta = 0$
- Suppose $X^T X$ invertible, then $\hat{\beta} = (X^T X)^{-1} X^T y$

What if $X^T X$ not invertible?

- Training: Maximum A Posteriori (leads to Ridge Regression)
- Assume prior $\beta \sim N(0, \frac{\sigma^2}{\lambda}I)$ for some $\lambda > 0$
- MAP leads to

 $\min_{\beta} \|\boldsymbol{y} - \boldsymbol{X}\beta\|_2^2 + \lambda \|\beta\|_2^2$

- Ridge Regression = OLS + ℓ_2 regularization
- Convex optimization. Set gradient to 0 leads to closed-form solution Gradient w.r.t. β is $-2X^T y + 2X^T X \beta + 2\lambda \beta = 0$
- $X^T X + \lambda I$ is always invertible, then $\hat{\beta} = (X^T X + \lambda I)^{-1} X^T y$

•
$$\beta^* = [1, \frac{1}{2}, \frac{1}{3}]$$

X	$(\boldsymbol{\beta}^*)^T \boldsymbol{x}$	У
(1,0,0)	1	1
(1,1,1)	11/6	2
(1,1,2)	13/6	7/3

•
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 2 \\ 7/3 \end{bmatrix}$

•
$$\beta^* = [1, \frac{1}{2}, \frac{1}{3}]$$

X	$(\boldsymbol{\beta}^*)^T \boldsymbol{x}$	y	\widehat{y}
(1,0,0)	1	1	0.997
(1,1,1)	11/6	2	1.99
(1,1,2)	13/6	7/3	2.34

•
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 2 \\ 7/3 \end{bmatrix}$
• $\lambda = 0.01$, $\hat{\beta} \approx [0.997, 0.648, 0.346]$

• $\beta^* = [1, \frac{1}{2}, \frac{1}{3}]$

X	$(\boldsymbol{\beta}^*)^T \boldsymbol{x}$	y	\widehat{y}
(1,0,0)	1	1	1
(1,1,1)	11/6	2	2
(1,1,2)	13/6	7/3	2.33

•
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ 7/3 \end{bmatrix}$$

• $\lambda = 0, \hat{\beta} \approx [1, 0.667, 0.333]$

•
$$\beta^* = [1, \frac{1}{2}, \frac{1}{3}]$$

X	$(\boldsymbol{\beta}^*)^T \boldsymbol{x}$	y	\widehat{y}
(1,0,0)	1	1	0.049
(1,1,1)	11/6	2	0.150
(1,1,2)	13/6	7/3	0.211

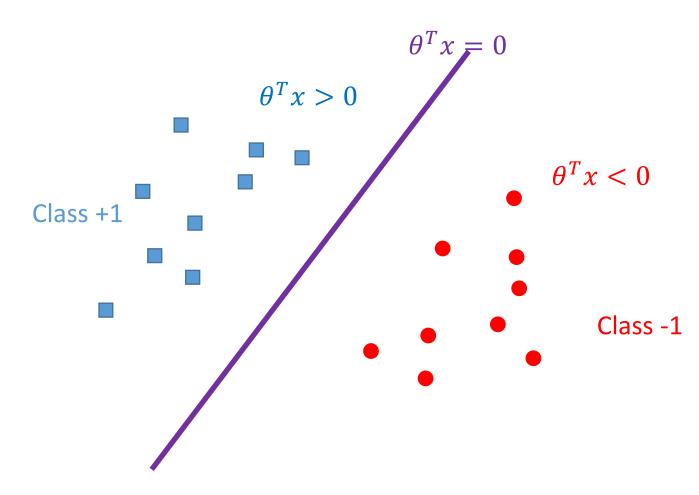
•
$$X = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{bmatrix}$$
, $y = \begin{bmatrix} 1 \\ 2 \\ 7/3 \end{bmatrix}$
• $\lambda = 100, \hat{\beta} \approx [0.049, 0.040, 0.061]$

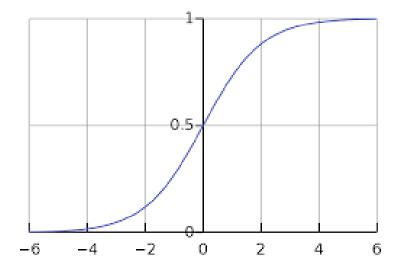
Linear regression using nonlinear features

- Linear regression only needs to be linear in β
- Can use nonlinear features of the input
- Polynomial regression on input z
 - let $x = (1, z, z^2, z^3, ..., z^p)$
 - Function $y = \beta^T x = \beta_0 + \beta_1 z + \beta_2 z^2 + \dots + \beta_p z^p$
- Higher order regression on input $z = (z_1, z_2)$
 - let $x = (1, z_1, z_2, z_1 z_2, z_1^2, z_2^2)$
 - Function $y = \beta^T x = \beta_0 + \beta_1 z_1 + \beta_2 z_2 + \beta_3 z_1 z_2 + \beta_4 z_1^2 + \beta_5 z_2^2$
- In general, for input z
 - Let $x = (1, \phi_1(z), \phi_2(z), \phi_3(z), \dots, \phi_p(z))$ for functions ϕ_j
 - Function $y = \beta_0 + \sum_j \beta_j \phi_j(z)$

Linear classification

- $x \in \mathbb{R}^{p+1}, y \in \{-1, +1\}$
- Intuition: use $\theta^T x$
 - y = +1 if $\theta^T x$ positive
 - y = -1 if $\theta^T x$ negative





• $x \in R^{p+1}, y \in \{-1, +1\}$

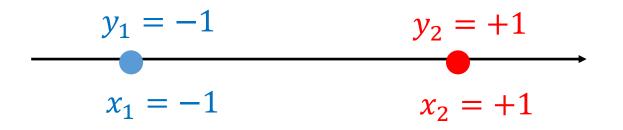
• Idea: squash $\theta^T x$ to [0,1] so that it represents the probability y = +1 $p(y = +1|x) = \sigma(\theta^T x) = \frac{1}{1 + \exp(-\theta^T x)}$ $p(y = -1|x) = 1 - \sigma(\theta^T x) = \frac{\exp(-\theta^T x)}{1 + \exp(-\theta^T x)} = \frac{1}{1 + \exp(\theta^T x)}$ where $\sigma(z) = \frac{1}{1 + \exp(-z)}$ is the logistic function

• Training: Maximum Likelihood Estimate (on the conditional likelihood) $\max_{\theta} \sum_{i} \log p(y_i | x_i, \theta)$

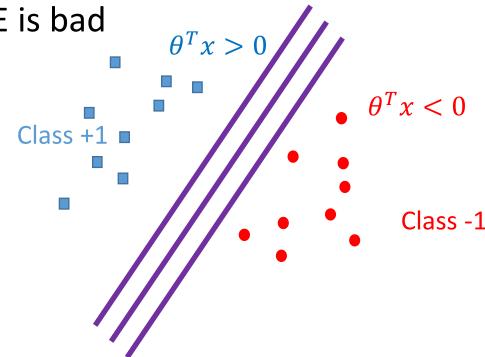
$$\min_{\theta} \sum_{i} \log \left(1 + \exp(-y_i \theta^T x_i)\right)$$

- When training data is linearly separable, MLE is bad
 - 1. $\|\theta\|_2$ goes to infinity
 - 2. There can be many solutions

- Training: Maximum Likelihood Estimate (on the conditional likelihood) $\min_{\theta} \sum_{i} \log (1 + \exp(-y_i \theta^T x_i))$
- When training data is linearly separable, MLE is bad
 - 1. $\|\theta\|_2$ goes to infinity
 - 2. There can be many solutions
- To see 1, consider the simple example below



- Training: Maximum Likelihood Estimate (on the conditional likelihood) $\min_{\theta} \sum_{i} \log (1 + \exp(-y_i \theta^T x_i))$
- When training data is linearly separable, MLE is bad
 - 1. $\|\theta\|_2$ goes to infinity
 - 2. There can be many solutions
- To see 2, consider the figure



- Training: Maximum A Posteriori
- Assume prior $\beta \sim N(0, \frac{1}{\lambda}I)$ for some $\lambda > 0$
- MAP leads to

$$\min_{\boldsymbol{\theta}} \sum_{i} \log \left(1 + \exp(-y_i \boldsymbol{\theta}^T x_i)\right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

- Convex optimization
- But no closed form solution; solve via (stochastic) gradient descent

Gradient descent

Suppose we have optimization

$$\min_{\boldsymbol{\theta}} \sum_{i} l(x_i, y_i, \boldsymbol{\theta})$$

- Regularized logistic regression: $l(x_i, y_i, \theta) = \log(1 + \exp(-y_i \theta^T x_i)) + \frac{\lambda}{2n} \|\theta\|_2^2$
- Ridge regression: $l(x_i, y_i, \beta) = (\beta^T x_i y_i)^2 + \frac{\lambda}{n} ||\beta||_2^2$
- Gradient descent (GD) with step size $\eta > 0$:
 - Initialize $\theta^{(0)}$
 - For $t = 1, 2, ..., \text{ set } \theta^{(t)} = \theta^{(t-1)} \eta \sum_{i} \nabla_{\theta} l(x_{i}, y_{i}, \theta^{(t-1)})$

Stochastic gradient descent

• Suppose we have optimization

$$\min_{\boldsymbol{\theta}} \sum_{i} l(x_i, y_i, \boldsymbol{\theta})$$

- Regularized logistic regression: $l(x_i, y_i, \theta) = \log(1 + \exp(-y_i \theta^T x_i)) + \frac{\lambda}{2n} \|\theta\|_2^2$
- Ridge regression: $l(x_i, y_i, \beta) = (\beta^T x_i y_i)^2 + \frac{\lambda}{n} ||\beta||_2^2$
- Stochastic gradient descent (SGD) with step size $\eta > 0$:
 - Initialize $\theta^{(0)}$
 - For t = 1, 2, ..., randomly sample an i, and $\theta^{(t)} = \theta^{(t-1)} \eta n \nabla_{\theta} l(x_i, y_i, \theta^{(t-1)})$

Multi-class logistic regression

- $x \in \mathbb{R}^{p+1}, y \in \{1, 2, \dots, K\}$
- Each class has parameter $\theta_i \in \mathbb{R}^{p+1}$
- Use softmax to squash $(\theta_1^T x, \theta_2^T x, \dots, \theta_K^T x)$ into probabilities:

$$p(y = j | x, \{\theta_k\}) = \frac{\exp(\theta_j^T x)}{\sum_k \exp(\theta_k^T x)}$$

• Training by MLE:

$$\max_{\boldsymbol{\theta}} \sum_{\boldsymbol{i}} \log p(y_{\boldsymbol{i}} | \boldsymbol{x}_{\boldsymbol{i}}, \{\boldsymbol{\theta}_k\})$$

Multi-class logistic regression

- $x \in \mathbb{R}^{p+1}, y \in \{1, 2, \dots, K\}$
- Each class has parameter $\theta_i \in \mathbb{R}^{p+1}$
- Use softmax to squash $(\theta_1^T x, \theta_2^T x, \dots, \theta_K^T x)$ into probabilities:

$$p(y = j | x, \{\theta_k\}) = \frac{\exp(\theta_j^T x)}{\sum_k \exp(\theta_k^T x)}$$

• Training by MAP:

$$\min_{\boldsymbol{\theta}} \sum_{i} \log p(y_i | x_i, \{\theta_k\}) + \frac{\lambda}{2} \sum_{k} \|\theta_k\|_2^2$$