k-Nearest Neighbors

CS 540

Yingyu Liang

K-nearest neighbors for classification

- Given training data $\{(x_i, y_i): 1 \le i \le n\}$
- Store the training data
- Given a new data point x*, find its k nearest neighbors in the training data, predict the majority label of the neighbors

K-nearest neighbors for classification

Input: Training data (x₁, y₁), ..., (x_n, y_n); distance function d(); number of neighbors k; test instance x*
1. Find the k training instances x_{i1}, ..., x_{ik} closest to x* under distance d().
2. Output y* as the majority class of y_{i1}, ..., y_{ik}. Break ties randomly.

Example: 1-NN for Little Green Man

- Little green men:
 - Predict gender (M,F) from weight, height?
 - Predict age (adult, juvenile) from weight, height?

Example: 1-NN for Little Green Man

The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

K-NN for regression

• What if we want regression?

- Instead of majority vote, take average of neighbors' labels
 Given test point x*, find its k nearest neighbors x_{i1}, ..., x_{ik}
 - Output the predicted label $\frac{1}{k}(y_{i_1} + \dots + y_{i_k})$

How can we determine distance

suppose all features are discrete

 Hamming distance: count the number of features for which two instances differ

suppose all features are continuous

Euclidean distance: sum of squared differences

 $d(x_i, x_j) = \sum_f (x_{if} - x_{jf})^2$, where x_{if} is the *f*-th feature

• Manhattan distance:

 $d(x_i, x_j) = \sum_f |x_{if} - x_{jf}|$, where x_{if} is the f-th feature

How to pick the number of neighbors

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

What's the predicted label for the black dot using 1 neighbor? 3 neighbors?