Informed Search

Anthony Gitter
gitter@biostat.wisc.edu
University of Wisconsin-Madison

Based on slides from Andrew Moore (https://www.autonlab.org/resources/tutorials), modified by Xiaojin Zhu (UW-Madison) and Anthony Gitter

Main messages

- A* search. Always be optimistic.

Uninformed vs. informed search

- Uninformed search (BFS, UCS, DFS, IDS, etc.)
- Knows the actual path cost $g(s)$ from start to a node s in the fringe, but that's it.

- Informed search

- Also has a heuristic $h(s)$ of the cost from s to goal.
- ('h'= heuristic, non-negative)
- Can be much faster than uninformed search.

Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least $g(s)$
- Use a priority queue:
- Push in states with their first-half-cost $g(s)$
- Pop out the state with the least $g(s)$ first.
- Now we also have an estimate of the second-halfcost $h(s)$, how to use it?

First attempt: Best-first greedy search

- Idea 1: use $h(s)$ instead of $g(s)$
- Always expand the node with the least $h(s)$
- Use a priority queue:
- Push in states with their second-half-cost $h(s)$
- Pop out the state with the least $h(s)$ first.
- Known as "best first greedy" search
- How's this idea?

Best-first greedy search making bad decisions

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal
- $A \rightarrow B \rightarrow C \rightarrow G$ is the optimal path

Second attempt: A search

- Idea 2: use $g(s)+h(s)$
- Always expand the node with the least $g(s)+h(s)$
- Use a priority queue:
- Push in states with their first-half-cost $g(s)+h(s)$
- Pop out the state with the least $g(s)+h(s)$ first.
- Known as " A " search
- How's this idea?

- Works for this example

A search still not quite right

- A search is not optimal.

Third attempt: A* search

- Same as A search, but the heuristic function $\boldsymbol{h}()$ has to satisfy $\boldsymbol{h}(\boldsymbol{s}) \leq h^{*}(s)$, where $h^{*}(s)$ is the true cost from node s to the goal.
- Such heuristic function $\boldsymbol{h}()$ is called admissible.
- An admissible heuristic never over-estimates

- A search with admissible $\boldsymbol{h}()$ is called A^{*} search.
- Still require $\boldsymbol{h}(\boldsymbol{s}) \geq 0$ as well

Admissible heuristic functions h

- 8-puzzle example

Example State	1		5
	2	6	3
	7	4	8

Goal State	1	2	3
	4	5	6
	7	8	

- Which of the following are admissible heuristics?

-h(n)=0
-h(n)=1
-h(n)=sum of Manhattan distance between
each tile and its goal location

Admissible heuristic functions \boldsymbol{h}

- 8-puzzle example

	1		5
State	2	6	3
	7	4	8

Goal State	1	2	3
	4	5	6
	7	8	

- Which of the following are admissible heuristics?
-h(n)=number of tiles in wrong position YES
$\cdot h(n)=0$ YES, uninformed uniform cost search
-h(n)=1 NO, goal state
-h(n)=sum of Manhattan distance between
each tile and its goal location YES

Admissible heuristic functions h

- In general, which of the following are admissible heuristics? $h^{*}(n)$ is the true optimal cost from n to goal.

$$
\begin{aligned}
& \cdot h(n)=h^{*}(n) \\
& \cdot h(n)=\max \left(2, h^{\star}(n)\right) \\
& \cdot h(n)=\min \left(2, h^{*}(n)\right) \\
& \cdot h(n)=h^{\star}(n)-2 \\
& \cdot h(n)=\operatorname{sqrt}^{2}\left(h^{*}(n)\right)
\end{aligned}
$$

Admissible heuristic functions h

- In general, which of the following are admissible heuristics? $h^{*}(n)$ is the true optimal cost from n to goal.

$$
\begin{array}{ll}
\cdot h(n)=h^{*}(n) & \text { YES } \\
\cdot h(n)=\max \left(2, h^{*}(n)\right) & \text { NO } \\
\cdot h(n)=\min \left(2, h^{*}(n)\right) & \text { YES } \\
\cdot h(n)=h^{*}(n)-2 & \text { NO, possibly negative } \\
\cdot h(n)=\operatorname{sqrt}^{*}\left(h^{*}(n)\right) & \text { NO if } h^{*}(n)<1
\end{array}
$$

Heuristics for Admissible heuristics

- How to construct heuristic functions?

Example State	1		5
	2	6	3
	7	4	8

| |
| :--- | :--- | :--- | :--- |
| Goal |
| State |$|$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| | 4 | 5 |

- Often by relaxing the constraints
-h(n)=number of tiles in wrong position Allow tiles to fly to their destination in one step
-h(n)=sum of Manhattan distance between
each tile and its goal location
Allow tiles to move on top of other tiles

"My heuristic is better than yours"

- A heuristic function h2 dominates h 1 if for all s

$$
\text { h1 (s) } \leq \mathrm{h} 2(\mathrm{~s}) \leq \mathrm{h}^{*}(\mathrm{~s})
$$

- We prefer heuristic functions as close to h^{*} as possible, but not over h^{*}.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes

Q1: When should A^{*} stop?

- Idea: as soon as it generates the goal state?

- $\mathrm{h}(\mathrm{)}$ is admissible
- The goal G will be generated as path $A \rightarrow B \rightarrow G$, with cost 1000 .

Q1: The correct A* stop rule

- A* should terminate only when a goal is popped from the priority queue

- If you have exceedingly good memory, you'll remember this is the same rule for uniform cost search on cyclic graphs.
- Indeed A^{*} with h()$\equiv 0$ is exactly uniform cost search!

Q2: A* revisiting expanded states (CLOSED)

- One more complication: A* can revisit an expanded state and discover a shorter path

- Can you find the state in question?

Q2: A* revisiting expanded states (CLOSED)

- One more complication: A* can revisit an expanded state and discover a shorter path

- Can you find the state in question?

Q3: What if A^{*} revisits a state in the fringe (OPEN)?

(Note the numbers are different)

- 'promote' D in the queue with the smaller cost
- Uniform cost search would behave the same way

The A^{*} algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n)=g(n)+h(n)$)
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n , generating all its successors and attach to them pointers back to n .

For each successor n' of n

1. If n ' is not already on OPEN or CLOSED estimate $h(n '), g(n ')=g(n)+c\left(n, n^{\prime}\right)$, $f\left(n^{\prime}\right)=g\left(n^{\prime}\right)+h\left(n^{\prime}\right)$, and place it on OPEN.
2. If n ' is already on OPEN or CLOSED, then check if $g\left(n^{\prime}\right)$ is lower for the new version of n '. If so, then:
3. Redirect pointers backward from n^{\prime} along path yielding lower $\mathrm{g}\left(\mathrm{n}^{\prime}\right)$.
4. Put n' on OPEN.
5. If $g(n ')$ is not lower for the new version, do nothing.
6. Goto 2.

A^{*} : the dark side

- A^{*} can use lots of memory. O(number of states)
- For large problems

A* will run out of memory

- We'll look at two alternatives:

- IDA*
- Beam search

IDA*: iterative deepening A*

Memory bounded search. Assume integer costs

- Do path checking DFS, do not expand any node with $f(n)>0$. Stop if we find a goal.
- Do path checking DFS, do not expand any node with $f(n)>1$. Stop if we find a goal.
- Do path checking DFS, do not expand any node with $f(n)>2$. Stop if we find a goal.
- Do path checking DFS, do not expand any node with $f(n)>3$. Stop if we find a goal.
... repeat this, increase threshold by 1 each time until we find a goal.
This is complete, optimal, but more costly than A* in general.

IDA*: iterative deepening A*

- How many IDA* restarts?
- Still assuming integer costs
- Optimal solution cost C^{*}
- At most C^{*} restarts
- What if we do not have integer costs?
- Set initial threshold t
- Do path checking DFS, do not expand any node with $f(n)>t$. Stop if we find a goal.
- Set t to the min $f(n)$ of nodes that were not expanded
- Restart
- Worst case requires restart for each state

Beam search

- Very general technique, not just for A^{*}
- The priority queue has a fixed size k. Only the top k nodes are kept. Others are discarded.
- Neither complete nor optimal, nor can maintain an 'expanded' node list, but memory efficient.
- Variation: The priority queue only keeps nodes that are at most ε worse than the best node in the queue. ε is the beam width.
- Beam search used successfully in speech recognition.

A* example

(All edges are directed, pointing downwards)

A* example

OPEN

$\mathrm{S}(0+8)$
$A(1+7) B(5+4) C(8+3)$
$B(5+4) C(8+3) D(4+i n f) E(8+i n f) G(10+0)$
$C(8+3) D(4+$ inf $) E(8+$ inf $) G(9+0)$
$C(8+3) D(4+i n f) E(8+i n f)$

CLOSED
$S(0+8)$
$S(0+8) A(1+7)$
$S(0+8) A(1+7) B(5+4)$
$S(0+8) A(1+7) B(5+4) G(9+0)$

Backtrack: G => B => S

IDA* example

IDA* example, threshold $t=8$

IDA* example, threshold $t=9$

Beam search example

Beam search example, $k=2$

Beam search example

What you should know

- Know why best-first greedy search is bad
- Thoroughly understand A^{*}
- Trace simple examples of A^{*} execution
- Understand admissible heuristics
- Know how to improve A* space requirements

Appendix: Proof that A^{*} is optimal

- Suppose A^{*} finds a suboptimal path ending in goal G^{\prime}, where $f\left(G^{\prime}\right)>f^{*}=$ cost of optimal path
- Let's look at the first unexpanded node n on the optimal path (n exists, otherwise the optimal goal would have been found)
- $f(n) \geq f\left(G^{\prime}\right)$, otherwise we would have expanded n
- $f(n)=g(n)+h(n) \quad$ by definition
$=g^{*}(n)+h(n)$ because n is on the optimal path
$\leq g^{*}(n)+h^{*}(n) \quad$ because h is admissible
$=f^{*} \quad$ because n is on the optimal path
- $f^{*} \geq f(n) \geq f\left(G^{\prime}\right)$, contradicting the assumption at top

