
slide 1

Informed Search

Based on slides from Andrew Moore
(https://www.autonlab.org/resources/tutorials), modified
by Xiaojin Zhu (UW-Madison) and Anthony Gitter

Anthony Gitter

gitter@biostat.wisc.edu

University of Wisconsin-Madison

https://www.autonlab.org/resources/tutorials

slide 2

Main messages

• A* search. Always be optimistic.

slide 3

Uninformed vs. informed search

• Uninformed search (BFS, UCS, DFS, IDS, etc.)

 Knows the actual path cost g(s) from start to a node s in

the fringe, but that’s it.

• Informed search

 Also has a heuristic h(s) of the cost from s to goal.

• (‘h’= heuristic, non-negative)

 Can be much faster than uninformed search.

start
s

goal
g(s)

start s
goal

g(s) h(s)

slide 4

Recall: Uniform-cost search

• Uniform-cost search: uninformed search when edge
costs are not the same.

• Complete (will find a goal). Optimal (will find the

least-cost goal).

• Always expand the node with the least g(s)

 Use a priority queue:

• Push in states with their first-half-cost g(s)

• Pop out the state with the least g(s) first.

• Now we also have an estimate of the second-half-

cost h(s), how to use it?

start s
goal

g(s) h(s)

slide 5

First attempt: Best-first greedy search

• Idea 1: use h(s) instead of g(s)

• Always expand the node with the least h(s)

 Use a priority queue:

• Push in states with their second-half-cost h(s)

• Pop out the state with the least h(s) first.

• Known as “best first greedy” search

• How’s this idea?

slide 6

Best-first greedy search making bad decisions

• It will follow the path ACG (why?)

• Obviously not optimal

 ABCG is the optimal path

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

slide 7

Second attempt: A search

• Idea 2: use g(s)+h(s)

• Always expand the node with the least g(s)+h(s)

 Use a priority queue:

• Push in states with their first-half-cost g(s)+h(s)

• Pop out the state with the least g(s)+h(s) first.

• Known as “A” search

• How’s this idea?

• Works for this example

BA GC

h=3 h=2 h=1 h=0
1 1 1

999

slide 8

A search still not quite right

• A search is not optimal.

BA GC

h=3 h=1000 h=1 h=0
1 1 1

999

slide 9

Third attempt: A* search

• Same as A search, but the heuristic function h() has
to satisfy h(s) h*(s), where h*(s) is the true cost from
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

• Still require h(s) ≥ 0 as well

It is always
optimistic

slide 10

Admissible heuristic functions h

• 8-puzzle example

• Which of the following are admissible heuristics?

847

362

51

87

654

321
Example
State

Goal
State

•h(n)=number of tiles in wrong position

•h(n)=0

•h(n)=1

•h(n)=sum of Manhattan distance between

each tile and its goal location

slide 11

Admissible heuristic functions h

• 8-puzzle example

• Which of the following are admissible heuristics?

847

362

51

87

654

321
Example
State

Goal
State

•h(n)=number of tiles in wrong position YES

•h(n)=0 YES, uninformed uniform cost search

•h(n)=1 NO, goal state

•h(n)=sum of Manhattan distance between

each tile and its goal location YES

slide 12

Admissible heuristic functions h

• In general, which of the following are admissible
heuristics? h*(n) is the true optimal cost from n to
goal.

•h(n)=h*(n)

•h(n)=max(2,h*(n))

•h(n)=min(2,h*(n))

•h(n)=h*(n)-2

•h(n)=sqrt(h*(n))

slide 13

Admissible heuristic functions h

• In general, which of the following are admissible
heuristics? h*(n) is the true optimal cost from n to
goal.

•h(n)=h*(n) YES

•h(n)=max(2,h*(n)) NO

•h(n)=min(2,h*(n)) YES

•h(n)=h*(n)-2 NO, possibly negative

•h(n)=sqrt(h*(n)) NO if h*(n)<1

slide 14

Heuristics for Admissible heuristics

• How to construct heuristic functions?

• Often by relaxing the constraints

847

362

51

87

654

321
Example
State

Goal
State

•h(n)=number of tiles in wrong position

Allow tiles to fly to their destination in one

step

•h(n)=sum of Manhattan distance between

each tile and its goal location

Allow tiles to move on top of other tiles

slide 15

“My heuristic is better than yours”

• A heuristic function h2 dominates h1 if for all s

h1(s) h2(s) h*(s)

• We prefer heuristic functions as close to h* as

possible, but not over h*.

But

• Good heuristic function might need complex

computation

• Time may be better spent, if we use a faster, simpler

heuristic function and expand more nodes

slide 16

Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

• h() is admissible

• The goal G will be generated as path ABG, with

cost 1000.

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0

slide 17

Q1: The correct A* stop rule

• A* should terminate only when a goal is popped from
the priority queue

• If you have exceedingly good memory, you’ll

remember this is the same rule for uniform cost

search on cyclic graphs.

• Indeed A* with h()0 is exactly uniform cost search!

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0

slide 18

Q2: A* revisiting expanded states (CLOSED)

• One more complication: A* can revisit an expanded
state and discover a shorter path

• Can you find the state in question?

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

slide 19

Q2: A* revisiting expanded states (CLOSED)

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

• One more complication: A* can revisit an expanded
state and discover a shorter path

• Can you find the state in question?

Put D back into the priority
queue, with the smaller g+h

slide 20

Q3: What if A* revisits a state in the fringe (OPEN)?

• ‘promote’ D in the queue with the smaller cost

• Uniform cost search would behave the same way

B

A D

C

999

1

2 1
h=3

h=2

h=1

h=2
G

h=0

999

(Note the numbers are different)

slide 21

The A* algorithm
1. Put the start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum

(note that f(n)=g(n)+h(n))

4. If n is a goal node, exit (trace back pointers from n to S)

5. Expand n, generating all its successors and attach to them pointers back to n.

For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'),

f(n')=g(n')+h(n'), and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new

version of n'. If so, then:

1. Redirect pointers backward from n' along path yielding lower g(n').

2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing.

6. Goto 2.

slide 22

A*: the dark side

• A* can use lots of memory.

O(number of states)

• For large problems

A* will run out of memory

• We’ll look at two alternatives:

 IDA*

 Beam search

Image: elite daily

https://www.elitedaily.com/p/what-happened-to-kylo-ren-at-the-end-of-the-last-jedi-refresh-your-memory-19456781

slide 23

IDA*: iterative deepening A*

• Memory bounded search. Assume integer costs

– Do path checking DFS, do not expand any node

with f(n)>0. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>1. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>2. Stop if we find a goal.

– Do path checking DFS, do not expand any node

with f(n)>3. Stop if we find a goal.

… repeat this, increase threshold by 1 each time

until we find a goal.

• This is complete, optimal, but more costly than A* in

general.

slide 24

IDA*: iterative deepening A*

• How many IDA* restarts?

 Still assuming integer costs

 Optimal solution cost C*

 At most C* restarts

• What if we do not have integer costs?

 Set initial threshold t

 Do path checking DFS, do not expand any node
with f(n)>t. Stop if we find a goal.

 Set t to the min f(n) of nodes that were not
expanded

 Restart

• Worst case requires restart for each state

slide 25

Beam search

• Very general technique, not just for A*

• The priority queue has a fixed size k. Only the top k

nodes are kept. Others are discarded.

• Neither complete nor optimal, nor can maintain an

‘expanded’ node list, but memory efficient.

• Variation: The priority queue only keeps nodes that

are at most worse than the best node in the queue.

 is the beam width.

• Beam search used successfully

in speech recognition.

Image: Nintendo World Report

https://www.nintendoworldreport.com/news/30478/new-luigis-mansion-2-details-announced

slide 26

A* example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

Initial stateh=8

h=7 h=4 h=3

h=0h=h=

slide 27

A* example

OPEN

S(0+8)

A(1+7) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(9+0)

C(8+3) D(4+inf) E(8+inf)

CLOSED

-

S(0+8)

S(0+8) A(1+7)

S(0+8) A(1+7) B(5+4)

S(0+8) A(1+7) B(5+4) G(9+0)

Backtrack: G => B => S

slide 28

IDA* example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Add more successors from A

and another path to the goal

F4
h=1

4

slide 29

IDA* example, threshold t = 8

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4)

PREFIX

-

S

S A

S A H

S A H F

S A D

slide 30

IDA* example, threshold t = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7) B(5+4)

B(5+4) H(2+2) D(4+4)

B(5+4) D(4+4) F(6+1)

B(5+4) D(4+4)

B(5+4)

G(9+0)

PREFIX

-

S

S A

S A H

S A H F

S A D

S B

S B G

slide 31

Beam search example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Demonstrate suboptimality

when k is too small

F4
h=1

4

slide 32

Beam search example, k = 2

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7) B(5+4)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4) G(10+0)

G(10+0)

CURRENT

-

S

A

H

F

D

G

slide 33

Beam search example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Try executing Beam search

with k = 3 to see when it works

F4
h=1

4

slide 34

What you should know

• Know why best-first greedy search is bad

• Thoroughly understand A*

• Trace simple examples of A* execution

• Understand admissible heuristics

• Know how to improve A* space requirements

slide 35

Appendix: Proof that A* is optimal

• Suppose A* finds a suboptimal path ending in goal
G’, where f(G’) > f* = cost of optimal path

• Let’s look at the first unexpanded node n on the

optimal path (n exists, otherwise the optimal goal

would have been found)

• f(n) f(G’), otherwise we would have expanded n

• f(n) = g(n)+h(n) by definition

= g*(n)+h(n) because n is on the optimal path

 g*(n)+h*(n) because h is admissible

= f* because n is on the optimal path

• f* f(n) f(G’), contradicting the assumption at top

