Informed Search

Anthony Gitter gitter@biostat.wisc.edu University of Wisconsin-Madison

Based on slides from Andrew Moore (<u>https://www.autonlab.org/resources/tutorials</u>), modified by Xiaojin Zhu (UW-Madison) and Anthony Gitter

Main messages

• A* search. Always be optimistic.

Uninformed vs. informed search

- Uninformed search (BFS, UCS, DFS, IDS, etc.)
 - Knows the actual path cost g(s) from start to a node s in the fringe, but that's it.

- Also has a heuristic h(s) of the cost from s to goal.
 - ('h'= heuristic, non-negative)
- Can be much faster than uninformed search.

Recall: Uniform-cost search

- Uniform-cost search: uninformed search when edge costs are not the same.
- Complete (will find a goal). Optimal (will find the least-cost goal).
- Always expand the node with the least g(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)
 - Pop out the state with the least g(s) first.
- Now we also have an estimate of the second-halfcost h(s), how to use it?

start
$$g(s)$$
 $h(s)$ goal

First attempt: Best-first greedy search

- Idea 1: use h(s) instead of g(s)
- Always expand the node with the least h(s)
 - Use a priority queue:
 - Push in states with their second-half-cost h(s)
 - Pop out the state with the least h(s) first.
- Known as "best first greedy" search
- How's this idea?

Best-first greedy search making bad decisions

- It will follow the path $A \rightarrow C \rightarrow G$ (why?)
- Obviously not optimal
 - $A \rightarrow B \rightarrow C \rightarrow G$ is the optimal path

Second attempt: <u>A search</u>

- Idea 2: use g(s) + h(s)
- Always expand the node with the least g(s) + h(s)
 - Use a priority queue:
 - Push in states with their first-half-cost g(s)+h(s)
 - Pop out the state with the least g(s)+h(s) first.
- Known as <u>"A" search</u>
- How's this idea?

Works for this example

<u>A search still not quite right</u>

<u>A search</u> is not optimal.

Third attempt: A* search

- Same as <u>A search</u>, but the heuristic function h() has to satisfy $h(s) \le h^*(s)$, where $h^*(s)$ is the true cost from node s to the goal.
- Such heuristic function h() is called **admissible**.
 - An admissible heuristic never over-estimates

- A search with admissible h() is called A^* search.
- Still require *h(s)* ≥ 0 as well

• 8-puzzle example

- Which of the following are admissible heuristics?
 - •h(n)=number of tiles in wrong position
 - •h(n)=0
 - •h(n)=1
 - •h(n)=sum of Manhattan distance between each tile and its goal location

• 8-puzzle example

- Which of the following are admissible heuristics?
 - h(n)=number of tiles in wrong position YES
 - •h(n)=0 YES, uninformed uniform cost search
 - •h(n)=1 NO, goal state
 - •h(n)=sum of Manhattan distance between each tile and its goal location YES

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

•h(n)=h*(n)

• $h(n) = max(2, h^{*}(n))$

•h(n)=min(2,h*(n))

•h(n)=h*(n)-2

•h(n)=sqrt(h*(n))

 In general, which of the following are admissible heuristics? h*(n) is the true optimal cost from n to goal.

•h(n)=h*(n) YES
•h(n)=max(2,h*(n)) NO
•h(n)=min(2,h*(n)) YES
•h(n)=h*(n)-2 NO, possibly negative
•h(n)=sqrt(h*(n)) NO if h*(n)<1

Heuristics for Admissible heuristics

• How to construct heuristic functions?

- Often by relaxing the constraints
 - h(n)=number of tiles in wrong position
 Allow tiles to fly to their destination in one step
 - •h(n)=sum of Manhattan distance between each tile and its goal location

Allow tiles to move on top of other tiles

"My heuristic is better than yours"

- A heuristic function h2 dominates h1 if for all s h1(s) ≤ h2(s) ≤ h*(s)
- We prefer heuristic functions as close to h* as possible, but not over h*.

But

- Good heuristic function might need complex computation
- Time may be better spent, if we use a faster, simpler heuristic function and expand more nodes

Q1: When should A* stop?

Idea: as soon as it generates the goal state?

- h() is admissible
- The goal G will be generated as path $A \rightarrow B \rightarrow G$, with cost 1000.

Q1: The correct A* stop rule

 A* should terminate only when a goal is popped from the priority queue

- If you have exceedingly good memory, you'll remember this is the same rule for uniform cost search on cyclic graphs.
- Indeed A* with h()=0 is exactly uniform cost search!

Q2: A* revisiting expanded states (CLOSED)

 One more complication: A* can revisit an expanded state and discover a shorter path

Can you find the state in question?

Q2: A* revisiting expanded states (CLOSED)

 One more complication: A* can revisit an expanded state and discover a shorter path

Can you find the state in question?

Q3: What if A* revisits a state in the fringe (OPEN)?

- 'promote' *D* in the queue with the smaller cost
- Uniform cost search would behave the same way

The A* algorithm

- 1. Put the start node S on the priority queue, called OPEN
- 2. If OPEN is empty, exit with failure
- Remove from OPEN and place on CLOSED a node n for which f(n) is minimum (note that f(n)=g(n)+h(n))
- 4. If n is a goal node, exit (trace back pointers from n to S)
- Expand n, generating all its successors and attach to them pointers back to n. For each successor n' of n
 - If n' is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'), f(n')=g(n')+h(n'), and place it on OPEN.
 - If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new version of n'. If so, then:
 - **1.** Redirect pointers backward from n' along path yielding lower g(n').
 - 2. Put n' on OPEN.
 - **3**. If g(n') is not lower for the new version, do nothing.
- 6. Goto 2.

A*: the dark side

- A* can use lots of memory.
 O(number of states)
- For large problems
 A* will run out of memory
- We'll look at two alternatives:
 - IDA*
 - Beam search

Image: elite daily

IDA*: iterative deepening A*

- Memory bounded search. Assume integer costs
 - Do path checking DFS, do not expand any node with f(n)>0. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>1. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>2. Stop if we find a goal.
 - Do path checking DFS, do not expand any node with f(n)>3. Stop if we find a goal.
 - ... repeat this, increase threshold by 1 each time until we find a goal.
- This is complete, optimal, but more costly than A* in general.

IDA*: iterative deepening A*

- How many IDA* restarts?
 - Still assuming integer costs
 - Optimal solution cost C*
 - At most C* restarts
- What if we do not have integer costs?
 - Set initial threshold *t*
 - Do path checking DFS, do not expand any node with f(n)>t. Stop if we find a goal.
 - Set t to the min f(n) of nodes that were not expanded
 - Restart
- Worst case requires restart for each state

Beam search

- Very general technique, not just for A*
- The priority queue has a fixed size k. Only the top k nodes are kept. Others are discarded.
- Neither complete nor optimal, nor can maintain an 'expanded' node list, but memory efficient.
- Variation: The priority queue only keeps nodes that are at most ε worse than the best node in the queue.
 ε is the beam width.
- Beam search used successfully in speech recognition.

Image: Nintendo World Report

A* example

(All edges are directed, pointing downwards)

A* example

OPEN S(0+8) A(1+7) B(5+4) C(8+3) S(0+8) B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) C(8+3) D(4+inf) E(8+inf) G(9+0) C(8+3) D(4+inf) E(8+inf)

CLOSED

S(0+8) A(1+7) S(0+8) A(1+7) B(5+4) S(0+8) A(1+7) B(5+4) G(9+0)

Backtrack: $G \Rightarrow B \Rightarrow S$

IDA* example, threshold *t* = 9

Beam search example

Beam search example, k = 2

Beam search example

What you should know

- Know why best-first greedy search is bad
- Thoroughly understand A*
- Trace simple examples of A* execution
- Understand admissible heuristics
- Know how to improve A* space requirements

Appendix: Proof that A* is optimal

- Suppose A* finds a suboptimal path ending in goal G', where $f(G') > f^* = \cos t$ of optimal path
- Let's look at the first unexpanded node n on the optimal path (n exists, otherwise the optimal goal would have been found)
- $f(n) \ge f(G')$, otherwise we would have expanded n
- f(n) = g(n)+h(n) by definition

 = g*(n)+h(n) because n is on the optimal path
 ≤ g*(n)+h*(n) because h is admissible
 = f* because n is on the optimal path

 f* ≥ f(n) ≥ f(G'), contradicting the assumption at top