Informed Search

Anthony Gitter
giltter@biostat.wisc.edu

University of Wisconsin-Madison

Based on slides from Andrew Moore
(), modified
by Xiaojin Zhu (UW-Madison) and Anthony Gitter slide 1

https://www.autonlab.org/resources/tutorials

Main messages

¢ A* search. Always be optimistic.

slide 2

Uninformed vs. informed search

Uninformed search (BFS, UCS, DFS, IDS, etc.)

= Knows the actual path cost g(s) from start to a node s In
the fringe, but that’s it.

= Also has a heuristic h(s) of the cost from s to goal.
* (‘h’= heuristic, non-negative)
= Can be much faster than uninformed search.

slide 3

Recall: Uniform-cost search

Uniform-cost search: uninformed search when edge
costs are not the same.

Complete (will find a goal). Optimal (will find the
least-cost goal).
Always expand the node with the least g(s)

= Use a priority gueue:

« Push in states with their first-half-cost g(s)
* Pop out the state with the least g(s) first.

Now we also have an estimate of the second-half-
cost h(s), how to use it?

slide 4

First attempt: Best-first greedy search

Idea 1: use h(s) instead of g(s)
Always expand the node with the least h(s)

= Use a priority queue:
* Push in states with their second-half-cost h(s)
* Pop out the state with the least h(s) first.

Known as “best first greedy” search
How'’s this idea?

slide 5

Best-first greedy search making bad decisions

999

1 1 1
h=3~ h=2 h=1 h=0

It will follow the path A2>C -2G (why?)
Obviously not optimal
= A-2>B-2>C-2G is the optimal path

slide 6

Second attempt: A search

ldea 2: use g(s)+h(s)
Always expand the node with the least g(s)+h(s)
= Use a priority queue:
- Push in states with their first-half-cost g(S)+h(s)
- Pop out the state with the least ¢(S)+h(s) first.
Known as “A” search
How'’s this idea?

999

1 1 1

h=3 h=2 h=1 h=0
Works for this example

slide 7

A search still not quite right

999

1 1
h=3 h=1000 h=1 h=0

A search is not optimal.

slide 8

Third attempt: A* search

Same as A search, but the heuristic function h() has
to satisfy h(s) < h*(s), where h*(s) Is the true cost from
node s to the goal.

Such heuristic function h() is called admissible.
An admissible heuristic never over-estimates

0o) Itisalways
=/ |Optimistic

A search with admissible h() is called A* search.
Still require h(s) 2 0 as well

slide 9

Admissible heuristic functions h

8-puzzle example

Example 1 > g‘fi" L2 3
State [2|6 | 3 a2 |5 |6
7148 7 |8

Which of the following are admissible heuristics?

*h(n)=number of tiles in wrong position
*h(n)=0

*h(n)=1

*h(n)=sum of Manhattan distance between
each tile and its goal location

slide 10

Admissible heuristic functions h

8-puzzle example

Example 1 > goal L2 3
State [2 |6 | 3 ate 115 |6
7148 7 |8

Which of the following are admissible heuristics?

*h(n)=number of tiles in wrong position YES
*h(n)=0 YES, uninformed uniform cost search
*h(n)=1 NO, goal state

*h(n)=sum of Manhattan distance between
each tile and its goal location YES

slide 11

Admissible heuristic functions h

In general, which of the following are admissible
heuristics? h*(n) is the true optimal cost from n to
goal.

h(n)=h(n)
-h(n)=max(2,h*(n))
h(n)=min(2,h(n))
h(n)=h(n)-2

h(n)=sqrt(h(n))

slide 12

Admissible heuristic functions h

In general, which of the following are admissible
heuristics? h*(n) is the true optimal cost from n to
goal.
‘h(n)=h*(n) YES
h(n)=max(2,n(n)) NO
‘h(n)=min(2,h*(n)) YES
h(n)=h(n)-2 NO, possibly negative

h(n)=sqrt(h(n)) NO if h*(n)<1

slide 13

Heuristics for Admissible heuristics

How to construct heuristic functions?

Example 1 > gto?l L2 3
State 2|6 |3 a4 15 |6
7148 7 |8

Often by relaxing the constraints

*h(n)=number of tiles in wrong position
Allow tiles to fly to their destination in one
step
*h(n)=sum of Manhattan distance between
each tile and its goal location
Allow tiles to move on top of other tiles

slide 14

“My heuristic is better than yours”

A heuristic function h2 dominates hl if for all s
h1(s) < h2(s) < h*(s)

We prefer heuristic functions as close to h* as

possible, but not over h*.

But

Good heuristic function might need complex
computation

Time may be better spent, if we use a faster, simpler
heuristic function and expand more nodes

slide 15

Q1l: When should A* stop?

|dea: as soon as it generates the goal state?

h() iIs admissible

The goal G will be generated as path A>B->G, with

cost 1000.

slide 16

Q1: The correct A* stop rule

A* should terminate only when a goal is popped from
the priority queue

If you have exceedingly good memory, you'll
remember this is the same rule for uniform cost

search on cyclic graphs.
Indeed A* with h()=0 is exactly uniform cost search!

slide 17

Q2: A* revisiting expanded states (CLOSED)

One more complication: A* can revisit an expanded
state and discover a shorter path

Can you find the state in question?

slide 18

Q2: A* revisiting expanded states (CLOSED)

One more complication: A* can revisit an expanded
state and discover a shorter path

Put D back into the priority
queue, with the smaller g+h

Can you find the state in question?

slide 19

Q3: What if A* revisits a state in the fringe (OPEN)?

(Note the numbers are different)

/2 999
) D)_999
& /h:1 @)
2 1

h=2

‘promote’ D in the queue with the smaller cost
Uniform cost search would behave the same way

slide 20

The A* algorithm

Put the start node S on the priority queue, called OPEN
If OPEN is empty, exit with failure

Remove from OPEN and place on CLOSED a node n for which f(n) is minimum
(note that f(n)=g(n)+h(n))
If n is a goal node, exit (trace back pointers from n to S)

Expand n, generating all its successors and attach to them pointers back to n.
For each successor n' of n

1. If n"is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n"),
f(n)=g(n")+h(n"), and place it on OPEN.

2. If n"is already on OPEN or CLOSED, then check if g(n') is lower for the new
version of n'. If so, then:
1. Redirect pointers backward from n' along path yielding lower g(n').
2.Put n' on OPEN.
3. If g(n') is not lower for the new version, do nothing.

Goto 2.

slide 21

A*: the dark side

¢ A* can use lots of memory.
O(number of states)

® For large problems
A* will run out of memory

® We'll look at two alternatives:
= IDA* Image:
= Beam search

slide 22

https://www.elitedaily.com/p/what-happened-to-kylo-ren-at-the-end-of-the-last-jedi-refresh-your-memory-19456781

IDA*: iterative deepening A*

Memory bounded search. Assume integer costs

— Do path checking DFS, do not expand any node
with f(n)>0. Stop if we find a goal.

— Do path checking DFS, do not expand any node
with f(n)>1. Stop if we find a goal.

— Do path checking DFS, do not expand any node
with f(n)>2. Stop if we find a goal.

— Do path checking DFS, do not expand any node
with f(n)>3. Stop if we find a goal.

... repeat this, increase threshold by 1 each time
until we find a goal.

This is complete, optimal, but more costly than A* in
general.

slide 23

IDA*: iterative deepening A*

How many IDA* restarts?

= Still assuming integer costs
= Optimal solution cost C*

= At most C* restarts

What if we do not have integer costs?
= Setinitial threshold t

= Do path checking DFS, do not expand any node
with f(n)>t. Stop if we find a goal.

= Setttothe min f(n) of nodes that were not
expanded

= Restart
Worst case requires restart for each state

slide 24

Beam search

Very general technique, not just for A*

The priority qgueue has a fixed size k. Only the top k
nodes are kept. Others are discarded.

Neither complete nor optimal, nor can maintain an
‘expanded’ node list, but memory efficient.

Variation: The priority queue only keeps nodes that
are at most € worse than the best node in the queue.
¢ IS the beam width.

Beam search used successfully
In speech recognition.

Image:

slide 25

https://www.nintendoworldreport.com/news/30478/new-luigis-mansion-2-details-announced

A* example

h:g@ Initial state

1 8

h=7 h=4 h=3
Al (s

3/ 71 \9 |4 /%

® ©® @on

h=c0 h=c0 h=0

(All edges are directed, pointing downwards)

slide 26

A* example

OPEN
S(0+8)
A(1+7) B(5+4) C(8+3)
B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)
C(8+3) D(4+inf) E(8+inf) G(9+0)
C(8+3) D(4+inf) E(8+inf)

CLOSED

S(0+8)

S(0+8) A(1+7)

S(0+8) A(1+7) B(5+4)

S(0+8) A(1+7) B(5+4) G(9+0)

Backtrack: G=>B => S

slide 27

IDA* example

h:g@ Initial state
Add more successors from A
and another path to the goal % 8
h=7 h=4 h=3
W

7N \9 |4 /5

GOOBOO ® Feo
=0 h=00 h=00 h—ooy h=0
@

h=1

slide 28

PREFIX

S

SA
SAH
SAHF
SAD

IDA* example, threshold t =8

OPEN o

S(0+8) h:8® Initial state
A(1+7)

H(2+2) D(4+4) % 8

D(4+4) F(6+1) h=7 h=4 h=3

D(4+4) 7 A @

{ 9 4 5

®@@ OJOLEE

=00 h=00 h=00 h_OOV h=0
i =

h=1

slide 29

PREFIX

S

SA
SAH
SAHF
SAD
SB
SBG

IDA* example, threshold t =9

OPEN N

S(0+8) h:8® Initial state
A(1+7) B(5+4)

B(5+4) H(2+2) D(4+4) % 8

B(5+4) D(4+4) F(6+1) h=7 h=4 h=3

B(5+4) D(4+4)
B(5+4)
G(9+0)

®@@ OJOLEE

—o00 h=c0 h=00 h—oo/ h=0
O

h=1

slide 30

Beam search example

h:g@ Initial state
Demonstrate suboptimality
when k is too small % 8
h=7 h=4 h=3
a0

7N \9 |4 /5

GOOBOO ® Feo
=0 h=00 h=00 h—ooy h=0
@

h=1

slide 31

Beam search example, k =2

CURRENT OPEN ..

_ S(0+8) h:g@ Initial state
A(1+7) B(5+4)

H(2+2) D(4+4) % 8

D(4+4) F(6+1) h=7 h=4 h=3

D(4+4) G(10+0) A @

G(10+0)

71 \9 |4 /5

GOOBOO® ® Feo
=00 h=00 h=c0 h_oo/ h=0
@

h=1

@ O T I > W;

slide 32

Beam search example

h:g@ Initial state
Try executing Beam search
with k = 3 to see when it works % 8
h=7 h=4 h=3
W

7N \9 |4 /5

GOOBOO ® Feo
=0 h=00 h=00 h—ooy h=0
@

h=1

slide 33

What you should know

Know why best-first greedy search is bad
Thoroughly understand A*

Trace simple examples of A* execution
Understand admissible heuristics

Know how to improve A* space requirements

slide 34

Appendix: Proof that A* is optimal

Suppose A* finds a suboptimal path ending in goal
G’, where f(G’) > f* = cost of optimal path

Let’s look at the first unexpanded node n on the
optimal path (n exists, otherwise the optimal goal
would have been found)

f(n) > {(G"), otherwise we would have expanded n
f(n) = g(n)+h(n) by definition
= g*(n)+h(n) because n is on the optimal path
< g*(n)+h*(n) because h is admissible
= f* because n is on the optimal path
f* > f(n) > f(G’), contradicting the assumption at top

slide 35

