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Main messages

• A* search.  Always be optimistic.
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Uninformed vs. informed search

• Uninformed search (BFS, UCS, DFS, IDS, etc.)

 Knows the actual path cost g(s) from start to a node s in 

the fringe, but that’s it.

• Informed search

 Also has a heuristic h(s) of the cost from s to goal.

• (‘h’= heuristic, non-negative)

 Can be much faster than uninformed search.

start
s

goal
g(s)

start s
goal

g(s) h(s)
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Recall: Uniform-cost search

• Uniform-cost search: uninformed search when edge 
costs are not the same. 

• Complete (will find a goal).  Optimal (will find the 

least-cost goal).

• Always expand the node with the least g(s)

 Use a priority queue:

• Push in states with their first-half-cost g(s)

• Pop out the state with the least g(s) first.

• Now we also have an estimate of the second-half-

cost h(s), how to use it?

start s
goal

g(s) h(s)
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First attempt: Best-first greedy search

• Idea 1: use h(s) instead of g(s)

• Always expand the node with the least h(s)

 Use a priority queue:

• Push in states with their second-half-cost h(s)

• Pop out the state with the least h(s) first.

• Known as “best first greedy” search

• How’s this idea?
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Best-first greedy search making bad decisions

• It will follow the path ACG (why?)

• Obviously not optimal

 ABCG is the optimal path

BA GC

h=3        h=2        h=1        h=0
1             1            1

999



slide 7

Second attempt: A search

• Idea 2: use g(s)+h(s) 

• Always expand the node with the least g(s)+h(s)

 Use a priority queue:

• Push in states with their first-half-cost g(s)+h(s)

• Pop out the state with the least g(s)+h(s) first.

• Known as “A” search

• How’s this idea?

• Works for this example

BA GC

h=3        h=2        h=1        h=0
1             1            1

999
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A search still not quite right

• A search is not optimal.

BA GC

h=3      h=1000    h=1        h=0
1             1            1

999
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Third attempt: A* search

• Same as A search, but the heuristic function h() has 
to satisfy h(s)  h*(s), where h*(s) is the true cost from 
node s to the goal.

• Such heuristic function h() is called admissible.

• An admissible heuristic never over-estimates

• A search with admissible h() is called A* search.

• Still require h(s) ≥ 0 as well

It is always 
optimistic
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Admissible heuristic functions h

• 8-puzzle example

• Which of the following are admissible heuristics?

847

362

51

87

654

321
Example 
State

Goal 
State

•h(n)=number of tiles in wrong position

•h(n)=0

•h(n)=1

•h(n)=sum of Manhattan distance between 

each tile and its goal location
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Admissible heuristic functions h

• 8-puzzle example

• Which of the following are admissible heuristics?

847

362

51

87

654

321
Example 
State

Goal 
State

•h(n)=number of tiles in wrong position YES

•h(n)=0  YES, uninformed uniform cost search

•h(n)=1  NO, goal state

•h(n)=sum of Manhattan distance between 

each tile and its goal location YES
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Admissible heuristic functions h

• In general, which of the following are admissible 
heuristics? h*(n) is the true optimal cost from n to 
goal.

•h(n)=h*(n)

•h(n)=max(2,h*(n)) 

•h(n)=min(2,h*(n))

•h(n)=h*(n)-2

•h(n)=sqrt(h*(n)) 
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Admissible heuristic functions h

• In general, which of the following are admissible 
heuristics? h*(n) is the true optimal cost from n to 
goal.

•h(n)=h*(n) YES

•h(n)=max(2,h*(n)) NO

•h(n)=min(2,h*(n)) YES

•h(n)=h*(n)-2 NO, possibly negative

•h(n)=sqrt(h*(n)) NO if h*(n)<1
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Heuristics for Admissible heuristics

• How to construct heuristic functions?

• Often by relaxing the constraints

847

362

51

87

654

321
Example 
State

Goal 
State

•h(n)=number of tiles in wrong position 

Allow tiles to fly to their destination in one 

step

•h(n)=sum of Manhattan distance between 

each tile and its goal location

Allow tiles to move on top of other tiles
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“My heuristic is better than yours”

• A heuristic function h2 dominates h1 if for all s

h1(s)  h2(s)  h*(s)

• We prefer heuristic functions as close to h* as 

possible, but not over h*.

But

• Good heuristic function might need complex 

computation

• Time may be better spent, if we use a faster, simpler 

heuristic function and expand more nodes
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Q1: When should A* stop?

• Idea: as soon as it generates the goal state?

• h() is admissible

• The goal G will be generated as path ABG, with 

cost 1000.

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0



slide 17

Q1: The correct A* stop rule

• A* should terminate only when a goal is popped from 
the priority queue

• If you have exceedingly good memory, you’ll 

remember this is the same rule for uniform cost 

search on cyclic graphs.

• Indeed A* with h()0 is exactly uniform cost search!

B

A G

C

9991

1 1
h=2

h=1

h=0

h=0
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Q2: A* revisiting expanded states (CLOSED) 

• One more complication: A* can revisit an expanded 
state and discover a shorter path

• Can you find the state in question?

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2
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Q2: A* revisiting expanded states (CLOSED)

B

A D

C

999

1

1 1
h=1

h=900

h=1

h=1
G

h=0

2

• One more complication: A* can revisit an expanded 
state and discover a shorter path

• Can you find the state in question?

Put D back into the priority 
queue, with the smaller g+h
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Q3: What if A* revisits a state in the fringe (OPEN)?

• ‘promote’ D in the queue with the smaller cost

• Uniform cost search would behave the same way

B

A D

C

999

1

2 1
h=3

h=2

h=1

h=2
G

h=0

999

(Note the numbers are different)
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The A* algorithm
1. Put the start node S on the priority queue, called OPEN

2. If OPEN is empty, exit with failure

3. Remove from OPEN and place on CLOSED a node n for which f(n) is minimum 

(note that f(n)=g(n)+h(n))

4. If n is a goal node, exit (trace back pointers from n to S)

5. Expand n, generating all its successors and attach to them pointers back to n. 

For each successor n' of n

1. If n' is not already on OPEN or CLOSED estimate h(n'), g(n')=g(n)+ c(n,n'), 

f(n')=g(n')+h(n'), and place it on OPEN.

2. If n' is already on OPEN or CLOSED, then check if g(n') is lower for the new 

version of n'. If so, then:

1. Redirect pointers backward from n' along path yielding lower g(n').

2. Put n' on OPEN.

3. If g(n') is not lower for the new version, do nothing. 

6. Goto 2.
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A*: the dark side

• A* can use lots of memory.  

O(number of states)

• For large problems 

A* will run out of memory

• We’ll look at two alternatives:

 IDA*

 Beam search

Image: elite daily

https://www.elitedaily.com/p/what-happened-to-kylo-ren-at-the-end-of-the-last-jedi-refresh-your-memory-19456781
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IDA*: iterative deepening A*

• Memory bounded search.  Assume integer costs

– Do path checking DFS, do not expand any node 

with f(n)>0.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>1.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>2.  Stop if we find a goal.

– Do path checking DFS, do not expand any node 

with f(n)>3.  Stop if we find a goal.

… repeat this, increase threshold by 1 each time 

until we find a goal.

• This is complete, optimal, but more costly than A* in 

general.
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IDA*: iterative deepening A*

• How many IDA* restarts?

 Still assuming integer costs

 Optimal solution cost C*

 At most C* restarts

• What if we do not have integer costs?

 Set initial threshold t

 Do path checking DFS, do not expand any node 
with f(n)>t.  Stop if we find a goal.

 Set t to the min f(n) of nodes that were not 
expanded

 Restart

• Worst case requires restart for each state
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Beam search

• Very general technique, not just for A*

• The priority queue has a fixed size k.  Only the top k

nodes are kept.  Others are discarded.

• Neither complete nor optimal, nor can maintain an 

‘expanded’ node list, but memory efficient.

• Variation: The priority queue only keeps nodes that 

are at most  worse than the best node in the queue. 

 is the beam width.

• Beam search used successfully

in speech recognition.

Image: Nintendo World Report

https://www.nintendoworldreport.com/news/30478/new-luigis-mansion-2-details-announced
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A* example

S

A B C

D E G

1
5

8

3 7 9 4 5

Goal state

Initial state

(All edges are directed, pointing downwards)

Initial stateh=8

h=7 h=4 h=3

h=0h=h=
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A* example

OPEN

S(0+8)

A(1+7) B(5+4) C(8+3)

B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0)

C(8+3) D(4+inf) E(8+inf) G(9+0)

C(8+3) D(4+inf) E(8+inf)

CLOSED

-

S(0+8)

S(0+8) A(1+7)

S(0+8) A(1+7) B(5+4)

S(0+8) A(1+7) B(5+4) G(9+0)

Backtrack: G => B => S
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IDA* example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Add more successors from A

and another path to the goal

F4
h=1

4
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IDA* example, threshold t = 8

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4)

PREFIX

-

S

S A

S A H

S A H F

S A D
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IDA* example, threshold t = 9

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7) B(5+4)

B(5+4) H(2+2) D(4+4)

B(5+4) D(4+4) F(6+1)

B(5+4) D(4+4)

B(5+4)

G(9+0)

PREFIX

-

S

S A

S A H

S A H F

S A D

S B

S B G
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Beam search example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Demonstrate suboptimality

when k is too small

F4
h=1

4
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Beam search example, k = 2

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=4

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

F4
h=1

4

OPEN

S(0+8)

A(1+7) B(5+4)

H(2+2) D(4+4)

D(4+4) F(6+1)

D(4+4) G(10+0)

G(10+0)

CURRENT

-

S

A

H

F

D

G
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Beam search example

S

A B C

D E G

1
5

8

3
7 9 4 5

Goal state

Initial stateInitial stateh=8

h=7 h=4 h=3

h=0h=h=

L

2

h=

K

3

h=

J

5

h=

I

7

h=

H

1

h=2

Try executing Beam search

with k = 3 to see when it works

F4
h=1

4
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What you should know

• Know why best-first greedy search is bad

• Thoroughly understand A*

• Trace simple examples of A* execution

• Understand admissible heuristics

• Know how to improve A* space requirements
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Appendix: Proof that A* is optimal

• Suppose A* finds a suboptimal path ending in goal 
G’, where f(G’) > f* = cost of optimal path

• Let’s look at the first unexpanded node n on the 

optimal path (n exists, otherwise the optimal goal 

would have been found)

• f(n)  f(G’), otherwise we would have expanded n

• f(n) = g(n)+h(n) by definition

= g*(n)+h(n) because n is on the optimal path

 g*(n)+h*(n) because h is admissible

= f* because n is on the optimal path

• f*  f(n)  f(G’), contradicting the assumption at top


