
slide 1

Advanced Search
Hill climbing, simulated annealing, 

genetic algorithm

Based on slides from Andrew Moore 
(https://www.autonlab.org/resources/tutorials), modified 
by Xiaojin Zhu (UW-Madison) and Anthony Gitter

Anthony Gitter

gitter@biostat.wisc.edu

University of Wisconsin-Madison

https://www.autonlab.org/resources/tutorials
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Optimization problems

• Previously we want a path from start to goal

 Uninformed search: g(s): Iterative Deepening

 Informed search: g(s)+h(s): A*

• Now a different setting:

 Each state s has a score f(s) that we can compute

 The goal is to find the state with the highest score, or 

a reasonably high score

 Do not care about the path

 This is an optimization problem

 Enumerating the states is intractable

 Even previous search algorithms are too expensive
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Examples

• N-queen: f(s) = number of conflicting queens 
in state s

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context.
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Examples

• N-queen: f(s) = number of conflicting queens 
in state s

• Traveling salesperson problem (TSP)

 Visit each city once, return to first city

 State = order of cities, f(s) = total mileage

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context.
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Examples

• N-queen: f(s) = number of conflicting queens 
in state s

• Traveling salesperson problem (TSP)

 Visit each city once, return to first city

 State = order of cities, f(s) = total mileage

• Boolean satisfiability (e.g., 3-SAT)

 State = assignment to variables

 f(s) = # satisfied clauses

  means OR

Note we want s with the lowest score f(s)=0.  The techniques 
are the same.  Low or high should be obvious from context.

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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1. HILL CLIMBING



slide 7

Hill climbing

• Very simple idea:  Start from some state s,

 Move to a neighbor t with better score.  Repeat.

• Question: what’s a neighbor?

 You have to define that!

 The neighborhood of a state is the set of neighbors

 Also called ‘move set’ 

 Similar to successor function
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Neighbors: N-queen

• Example: N-queen (one queen per column).  One 
possibility:

…

s

f(s)=1

Neighborhood 

of s
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Neighbors: N-queen

• Example: N-queen (one queen per column).  One 
possibility:

 Pick the right-most most-conflicting column;

 Move the queen in that column vertically to a 

different location.

…

s

f(s)=1

Neighborhood 

of s

f=1

f=2

tie breaking more promising?
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Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour
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Neighbors: TSP

• state: A-B-C-D-E-F-G-H-A

• f = length of tour

• One possibility: 2-change

A-B-C-D-E-F-G-H-A

A-E-D-C-B-F-G-H-A

flip
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Neighbors: SAT 

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor: 

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Neighbors: SAT 

• State: (A=T, B=F, C=T, D=T, E=T)

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=F, B=F, C=T, D=T, E=T)

(A=T, B=T, C=T, D=T, E=T)

(A=T, B=F, C=F, D=T, E=T)

(A=T, B=F, C=T, D=F, E=T)

(A=T, B=F, C=T, D=T, E=F)

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Hill climbing

• Question: What’s a neighbor? 

 (vaguely) Problems tend to have structures.  A small 

change produces a neighboring state.

 The neighborhood must be small enough for 

efficiency

 Designing the neighborhood is critical.  This is the 

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor?  

• Question: What if no neighbor is better than the 

current state? 
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Hill climbing

• Question: What’s a neighbor? 

 (vaguely) Problems tend to have structures.  A small 

change produces a neighboring state.

 The neighborhood must be small enough for 

efficiency

 Designing the neighborhood is critical.  This is the 

real ingenuity – not the decision to use hill climbing.

• Question: Pick which neighbor? The best one (greedy)

• Question: What if no neighbor is better than the 

current state? Stop.
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Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t)  f(s) THEN stop, return s

4. s = t.  GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.  

• Easily stuck. 
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Hill climbing algorithm

1. Pick initial state s

2. Pick t in neighbors(s) with the largest f(t)

3. IF f(t)  f(s) THEN stop, return s

4. s = t.  GOTO 2.

• Not the most sophisticated algorithm in the world.

• Very greedy.  

• Easily stuck. 

your enemy: 

local 

optima
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Local optima in hill climbing

• Useful conceptual picture: f surface = ‘hills’ in state 
space

• But we can’t see the landscape all at once.  Only see 

the neighborhood.  Climb in fog.

state

f
Global optimum, 

where we want to be

state

f
fog
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Local optima in hill climbing

• Local optima (there can be many!)

• Plateaux

Declare top-
of-the-world?

state

f

state

f
Where shall I go?
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Declare top-
of-the-world?

Local optima in hill climbing

• Local optima (there can be many!)

• Plateaus

fog

state

f

state

f

fog

Where shall I go?

We’ll learn 
strategies for

escaping 

local optima
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Not every local minimum should be escaped
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=T, B=T, C=T, D=T, E=T) 0

State f

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=T, B=T, C=T, D=T, E=T) 0

Neighbors:

(A=F, B=T, C=T, D=T, E=T) 1

(A=T, B=F, C=T, D=T, E=T) 1

(A=T, B=T, C=F, D=T, E=T) 0

(A=T, B=T, C=T, D=F, E=T) 0

(A=T, B=T, C=T, D=T, E=F) 1

State f

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=T, B=T, C=T, D=T, E=T) 0

Neighbors:

(A=F, B=T, C=T, D=T, E=T) 1

(A=T, B=F, C=T, D=T, E=T) 1

(A=T, B=T, C=F, D=T, E=T) 0

(A=T, B=T, C=T, D=F, E=T) 0

(A=T, B=T, C=T, D=T, E=F) 1

State f

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=T, B=F, C=T, D=T, E=T) 1

Neighbors:

(A=F, B=F, C=T, D=T, E=T) 1

(A=T, B=T, C=T, D=T, E=T) 0

(A=T, B=F, C=F, D=T, E=T) 0

(A=T, B=F, C=T, D=F, E=T) 1

(A=T, B=F, C=T, D=T, E=F) 1

State f

Stuck

Is this the global 

optimum?

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=T, B=T, C=T, D=T, E=T) 0

Neighbors:

(A=F, B=T, C=T, D=T, E=T) 1

(A=T, B=F, C=T, D=T, E=T) 1

(A=T, B=T, C=F, D=T, E=T) 0

(A=T, B=T, C=T, D=F, E=T) 0

(A=T, B=T, C=T, D=T, E=F) 1

State f

What if we had 

picked a different 

neighbor?

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=F, B=T, C=T, D=T, E=T) 1

Neighbors:

(A=T, B=T, C=T, D=T, E=T) 0

(A=F, B=F, C=T, D=T, E=T) 1

(A=F, B=T, C=F, D=T, E=T) 1

(A=F, B=T, C=T, D=F, E=T) 0

(A=F, B=T, C=T, D=T, E=F) 2

State f

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=F, B=T, C=T, D=T, E=T) 1

Neighbors:

(A=T, B=T, C=T, D=T, E=T) 0

(A=F, B=F, C=T, D=T, E=T) 1

(A=F, B=T, C=F, D=T, E=T) 1

(A=F, B=T, C=T, D=F, E=T) 0

(A=F, B=T, C=T, D=T, E=F) 2

State f

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Example: Hill climbing for SAT 

• f = number of satisfied clauses

• Neighbor: flip the assignment of one variable

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

(A=F, B=T, C=T, D=T, E=F) 2

Neighbors:

(A=T, B=T, C=T, D=T, E=F) 1

(A=F, B=F, C=T, D=T, E=F) 1

(A=F, B=T, C=F, D=T, E=F) 1

(A=F, B=T, C=T, D=F, E=F) 1

(A=F, B=T, C=T, D=T, E=T) 1

State f

Stuck

Is this the global 

optimum?

Note: the recorded lecture incorrectly discussed 

clauses with AND operators instead of OR
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Repeated hill climbing with random restarts

• Very simple modification

1. When stuck, pick a random new start, run basic 

hill climbing from there.

2. Repeat this k times.

3. Return the best of the k local optima.

• Can be very effective

• Should be tried whenever hill climbing is used
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Variations of hill climbing

• Question: How do we make hill climbing less greedy?
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Variations of hill climbing

• Question: How do we make hill climbing less greedy?

 Stochastic hill climbing

• Randomly select among better neighbors

• The better, the more likely

• Pros / cons compared with basic hill climbing?
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Variations of hill climbing

• Question: What if the neighborhood is too large to 
enumerate?  (e.g. N-queen if we need to pick both the 
column and the move within it)
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Variations of hill climbing

• Question: What if the neighborhood is too large to 
enumerate?  (e.g. N-queen if we need to pick both the 
column and the move within it)

 First-choice hill climbing

• Randomly generate neighbors, one at a time

• If better, take the move

• Pros / cons compared with basic hill climbing?
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Variations of hill climbing

• We are still greedy!  Only willing to move upwards.

• Important observation in life:

Sometimes one 
needs to 
temporarily step 
back in order to 
move forward.

Sometimes one 
needs to move to an 
inferior neighbor in 
order to escape a 
local optimum.

=
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Variations of hill climbing

• Pick a random unsatisfied clause

• Consider 3 neighbors: flip each variable

• If any improves f, accept the best

• If none improves f:

 50% of the time pick the least bad neighbor

 50% of the time pick a random neighbor

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E

WALKSAT [Selman]

This is the best known algorithm 
for satisfying Boolean formulae.
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2. SIMULATED ANNEALING
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Simulated Annealing

anneal 

• To subject (glass or metal) to a process of heating 

and slow cooling in order to toughen and reduce 

brittleness.
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Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s) 

3. IF f(t) better THEN accept st.  

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.
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Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s) 

3. IF f(t) better THEN accept st.  

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

idea 1: p = 0.1 f

state
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Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s) 

3. IF f(t) better THEN accept st.  

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

idea 1: p = 0.1

idea 2: p decreases with time
f

state
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Simulated Annealing

1. Pick initial state s

2. Randomly pick t in neighbors(s) 

3. IF f(t) better THEN accept st.  

4. ELSE /* t is worse than s */

5. accept st with a small probability

6. GOTO 2 until bored.

How to choose the small probability?

idea 1: p = 0.1

idea 2: p decreases with time

idea 3: p decreases with time, 

also as the ‘badness’ |f(s)-f(t)| 

increases

f

state
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Simulated Annealing

• If f(t) better than f(s), always accept t

• Otherwise, accept t with probability
Boltzmann 
distribution







 


Temp

tfsf |)()(|
exp
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Simulated Annealing

• If f(t) better than f(s), always accept t

• Otherwise, accept t with probability

• Temp is a temperature parameter that ‘cools’ 

(anneals) over time, e.g. TempTemp*0.9 which 

gives Temp=(T0)
#iteration

 High temperature: almost always accept any t

 Low temperature: first-choice hill climbing

• If the ‘badness’ (formally known as energy difference)  

|f(s)-f(t)| is large, the probability is small.

Boltzmann 
distribution







 


Temp

tfsf |)()(|
exp
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Simulated Annealing algorithm

// assuming we want to maximize f()

current = Initial-State(problem)

for t = 1 to  do

T = Schedule(t) ; // T is the current temperature, which is 

monotonically decreasing with t 

if T=0 then return current ; // halt when temperature = 0

next = Select-Random-Successor-State(current)

deltaE = f(next) - f(current) ; // If positive, next is better than 

current.  Otherwise, next is worse than current. 

if deltaE > 0 then current = next ; // always move to a better 

state

else current = next with probability p = exp(deltaE / T) ; 
// as T  0, p  0; as deltaE  -, p 0 

end
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Simulated Annealing issues

• Cooling scheme important

• Neighborhood design is the real ingenuity, not the 

decision to use simulated annealing.

• Not much to say theoretically

 With infinitely slow cooling rate, finds global 

optimum with probability 1. 

• Proposed by Metropolis in 1953 based on the 

analogy that alloys manage to find a near global 

minimum energy state, when annealed slowly.

• Easy to implement.  

• Try hill-climbing with random restarts first!
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3. GENETIC

ALGORITHM

Image: Elliott Kalan, Marco 

Failla/Marvel Comics
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Evolution

• Survival of the fittest, a.k.a. natural selection

• Genes encoded as DNA (deoxyribonucleic acid), sequence of 

bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)

• The chromosomes from the parents exchange randomly by a 

process called crossover. Therefore, the offspring exhibit some 

traits of the father and some traits of the mother. 

 Requires genetic diversity among the parents to ensure 

sufficiently varied offspring

• A rarer process called mutation also changes the genes (e.g. 

spontaneous from radiation). 

 Organisms with nonsensical/deadly mutated die.

 Beneficial mutations produce “stronger” organisms.

 Neither: organisms aren’t improved.
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Natural selection

• Individuals compete for resources

• Individuals with better genes have a larger chance to 

produce offspring, and vice versa

• After many generations, the population consists of 

more genes from the superior individuals, and less 

from the inferior individuals

• Superiority defined by fitness to the environment

• Popularized by Darwin, independently Wallace



slide 50

Genetic algorithm

• Yet another AI algorithm based on real-world analogy

• Yet another heuristic stochastic search algorithm

• Each state s is called an individual.  Often (carefully) 

coded up as a string.

• The score f(s) is called the fitness of s.  Our goal is to 

find the global optimum (fittest) state.

• At any time we keep a fixed number of states.  They 

are called the population.  Similar to beam search.

(3 2 7 5 2 4 1 1)
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Individual encoding

• The “DNA”

• Satisfiability problem

(A B C D E) = (T F T T T)

• TSP

A  B  C

A  C  D

B  D  E

C   D  E

A  C  E
A-E-D-C-B-F-G-H-A
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Genetic algorithm

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection.
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Genetic algorithm

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection.

Number of non-
attacking pairs

prob. reproduction 

 fitness
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Genetic algorithm

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection.

Number of non-
attacking pairs

prob. reproduction 

 fitness

 Next generation
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Genetic algorithm

• Genetic algorithm: a special way to generate 
neighbors, using the analogy of cross-over, mutation, 
and natural selection.

Number of non-
attacking pairs

prob. reproduction 

 fitness

 Next generation
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Genetic algorithm (one variety)

1. Let s1, …, sN be the current population

2. Let pi = f(si) / j f(sj) be the reproduction probability

3. FOR k = 1; k<N; k+=2

• parent1 = randomly pick according to p

• parent2 = randomly pick another

• randomly select a crossover point, swap strings 

of parents 1, 2 to generate children t[k], t[k+1]

4. FOR k = 1; k<=N; k++

• Randomly mutate each position in t[k] with a 

small probability (mutation rate)

5. The new generation replaces the old: { s }{ t }.  

Repeat until bored or state with good enough score.
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Proportional selection

• pi = f(si) / j f(sj)

• j f(sj) = 5+20+11+8+6=50

• p1=5/50=10%
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Genetic algorithm example

• Scheduling summer courses

• 5 courses: A, B, C, D, E

• 3 time slots (all day long): Mon/Wed, Tue/Thu, Fri/Sat

• Students want to enroll in 3 courses

• Maximize students who can enroll in desired courses

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5
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Genetic algorithm example

• State: assign each course to a time slot

• Courses: A, B, C, D, E

• Time slots: M, T, F

• Courses A, B, E scheduled Mon/Wed

• Course D scheduled Tue/Thu

• Course C scheduled Fri/Sat

M M F T M

A B C D E
= MMFTM
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Genetic algorithm example

• Scoring a state

• 4+5=9 students can enroll in desired courses

MMFTM

Courses Students Can enroll?

A B C 2 No

A B D 7 No

A D E 3 No

B C D 4 Yes

B D E 10 No

C D E 5 Yes
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Genetic algorithm example

• Randomly initialize and score states

• Calculate reproduction probabilities

MMFTM = 9

TTFMM = 4

FMTTF = 19

MTTTF = 3

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

MMFTM = 26%

TTFMM = 11%

FMTTF = 54%

MTTTF = 9%
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Genetic algorithm example

• Select parents using reproduction probabilities

• Cross-over to generate children

MMFTM = 26%

TTFMM = 11%

FMTTF = 54%

MTTTF = 9%

FMTTF

MMFTM

MTTTF

FMTTF

FMTTF

MMFTM

MTTTF

FMTTF

FMFTM

MMTTF

MMTTF

FTTTF
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• Randomly mutate new children

FMFTM

MMTTF

MMTTF

FTTTF

Genetic algorithm example

FMFTT

MMTTF

MMTFF

FTTTF
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Genetic algorithm example

• Score states in updated population

• Calculate reproduction probabilities

FMFTT = 11

MMTTF = 13

MMTFF = 4

FTTTF = 0

Courses Students

A B C 2

A B D 7

A D E 3

B C D 4

B D E 10

C D E 5

FMFTT = 39%

MMTTF = 46%

MMTFF = 14%

FTTTF = 0%
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Genetic algorithm example

• Select parents using reproduction probabilities

• Cross-over to generate children

FMFTT = 39%

MMTTF = 46%

MMTFF = 14%

FTTTF = 0%

FMFTT

MMTFF

FMFTT

MMTTF

FMFTT

MMTFF

FMFTT

MMTTF

FMFTF

MMTFT

FMTTF

MMFTT
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• Randomly mutate new children

• Continue iterating

FMFTF

MMTFT

FMTTF

MMFTT

Genetic algorithm example

FMFTF

FMTMT

FMTMF

MMFTF
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Variations of genetic algorithm

• Parents may survive into the next generation

• Use ranking instead of f(s) in computing the 

reproduction probabilities

• Cross over random bits instead of chunks

• Optimize over sentences from a programming 

language.  Genetic programming.

• …
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Genetic algorithm issues

• State encoding is the real ingenuity, not the decision 
to use genetic algorithm

• Lack of diversity can lead to premature convergence 
and non-optimal solution

• Have to pick several parameters

 Population size, mutation rate, etc.

• Not much to say theoretically

 Cross-over (sexual reproduction) much more 

efficient than mutation (asexual reproduction). 

• Easy to implement

• Try hill-climbing with random restarts first!


