Advanced Search

Hill climbing, simulated annealing,
genetic algorithm

Anthony Gitter
giltter@biostat.wisc.edu

University of Wisconsin-Madison

Based on slides from Andrew Moore
(), modified
by Xiaojin Zhu (UW-Madison) and Anthony Gitter slide 1

https://www.autonlab.org/resources/tutorials

Optimization problems

Previously we want a path from start to goal
= Uninformed search: g(s): Iterative Deepening
* |[nformed search: g(s)+h(s): A*
Now a different setting:
= Each state s has a score f(s) that we can compute

= The goal is to find the state with the highest score, or
a reasonably high score

= Do not care about the path

= This is an optimization problem

= Enumerating the states is intractable

= Even previous search algorithms are too expensive

slide 2

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

slide 3

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

® Traveling salesperson problem (TSP)
= Visit each city once, return to first city
= State = order of cities, f(s) = total mileage

slide 4

Examples

® N-queen: f(s) = number of conflicting queens
In state s

Note we want s with the lowest score f(s)=0. The techniques
are the same. Low or high should be obvious from context.

® Traveling salesperson problem (TSP)
= Visit each city once, return to first city
= State = order of cities, f(s) = total mileage

® Boolean satisfiability (e.g., 3-SAT) Av —_BvC
= State = assignment to variables —AvCvD
= f(s) = # satisfied clauses “Cv—Dv_E
= v means OR —-Av -CVvE

Note: the recorded lecture incorrectly discussed _
clauses with AND operators instead of OR slide 5

1. HILL CLIMBING

slide 6

Hill climbing

Very simple idea: Start from some state s,
= Move to a neighbor t with better score. Repeat.
Question: what’'s a neighbor?
= You have to define that!
= The neighborhood of a state is the set of neighbors
= Also called ‘move set’
= Similar to successor function

slide 7

Neighbors: N-queen

® Example: N-queen (one queen per column). One
possibility:

Neighborhood
of s

slide 8

Neighbors: N-queen

Example: N-queen (one gueen per column). One
possibility: [tie breaking more promising?
= Pick the rigﬁ-most mos?cm/nflicting column;

= Move the queen in that column vertically to a

different location.
e
2
u
u o

e E s

% m

-w-'.' Neighborhood
mEom W

¥ mw of s

H EH E Ry

S
f(s)=1

"""

ﬁ.:fZ

slide 9

Neighbors: TSP

state: A-B-C-D-E-F-G-H-A
f = length of tour

slide 10

Neighbors: TSP

state: A-B-C-D-E-F-G-H-A
f = length of tour
One possibility: 2-change

A-

B-C-D-E

-F-G-H-A

flip

E-D-C-B

-F-G-H-A

slide 11

Neighbors: SAT

State: (A=T, B=F, C=T, D=T, E=T)
f = number of satisfied clauses
Neighbor:

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Note: the recorded lecture incorrectly discussed _
clauses with AND operators instead of OR slide 12

Neighbors: SAT

State: (A=T, B=F, C=T, D=T, E=T)
f = number of satisfied clauses

Neighbor: flip the assignment of one variable

(A=F, B=F, C=T, D=T, E=T) Av —Bv C
(A:T’ B=T, C=T, D=T, E:T) —-AvCvD
(A=T, B=F, C=F, D=T, E=T) Bg D V;E .

_ _ _ _ _ —C VvV — V —
(A=T, B=F, C=T, D=F, E=T) e ouE
(A=T, B=F, C=T, D=T, E=F)

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 13

Hill climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

= The neighborhood must be small enough for
efficiency

» Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor?

® Question: What if no neighbor is better than the
current state?

slide 14

Hill climbing

® Question: What's a neighbor?

= (vaguely) Problems tend to have structures. A small
change produces a neighboring state.

= The neighborhood must be small enough for
efficiency

» Designing the neighborhood is critical. This is the
real ingenuity — not the decision to use hill climbing.

® Question: Pick which neighbor? The best one (greedy)

® Question: What if no neighbor is better than the
current state? Stop.

slide 15

Hill climbing algorithm

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
IF f(t) < f(s) THEN stop, return s

s=t. GOTO 2.

e

Not the most sophisticated algorithm in the world.

Very greedy.
Easily stuck.

slide 16

Hill climbing algorithm

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
IF f(t) < f(s) THEN stop, return s

s=t. GOTO 2.

e

Not the most sophisticated algorithm ip~ e world.
Very greedy.
Easily stuck.

your enemy:
local
optima

slide 17

Local optima in hill climbing

Useful conceptual picture: f surface = ‘hills’ in state

Space f Global optimum,
where we want to be

state

But we can’t see the landscape all at once. Only see
the neighborhood. Climb in fog.

f

fog

State
slide 18

Local optima in hill climbing

Local optima (there can be many!)

\
Declare top- Q

of-the-world?
—

—
/'\

state

Plateaux

\ Where shall | go?

/

el

state

slide 19

Local optima in hill

Local optima (there ¢

e
We’ll learn
strategies for
Pl escaping

local optima

e shall | go?

slide 20

Not every Iocal minimum should be escaped

\ '

slide 21

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State f
Av—BvC
(A=T, B=T, C=T, D=T, E=T) 0 oD
BvDv-—-E

Note: the recorded lecture incorrectly discussed _
clauses with AND operators instead of OR slide 22

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=T, B=T, C=T, D=T, E=T)

Neighbors:

(A=F, B=T, C=T, D=T, E=T)
(A=T, B=F, C=T, D=T, E=T)
(A=T, B=T, C=F, D=T, E=T)
(A=T, B=T, C=T, D=F, E=T)
(A=T, B=T, C=T, D=T, E=F)

f

0

R OOR R

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 23

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=T, B=T, C=T, D=T, E=T)

Neighbors:

(A=F, B=T, C=T, D=T, E=T)
(A=T, B=F, C=T, D=T, E=T)
(A=T, B=T, C=F, D=T, E=T)
(A=T, B=T, C=T, D=F, E=T)
(A=T, B=T, C=T, D=T, E=F)

f

0

R OOR R

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 24

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State
(A=T, B=F, C=T, D=T, E=T)

Neighbors:

f

1

P, OOk

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Stuck

Is this the global
optimum?

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 25

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=T, B=T, C=T, D=T, E=T)

Neighbors:

(A=F, B=T, C=T, D=T, E=T)
(A=T, B=F, C=T, D=T, E=T)
(A=T, B=T, C=F, D=T, E=T)
(A=T, B=T, C=T, D=F, E=T)
(A=T, B=T, C=T, D=T, E=F)

f

0

R OOR R

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

What if we had
picked a different
neighbor?

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 26

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=F, B=T, C=T, D=T, E=T)

Neighbors:

(A=T, B=T, C=T, D=T, E=T)
(A=F, B=F, C=T, D=T, E=T)
(A=F, B=T, C=F, D=T, E=T)
(A=F, B=T, C=T, D=F, E=T)
(A=F, B=T, C=T, D=T, E=F)

f

1

N O PO

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 27

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=F, B=T, C=T, D=T, E=T)

Neighbors:

(A=T, B=T, C=T, D=T, E=T)
(A=F, B=F, C=T, D=T, E=T)
(A=F, B=T, C=F, D=T, E=T)
(A=F, B=T, C=T, D=F, E=T)
(A=F, B=T, C=T, D=T, E=F)

f

1

N O PO

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 28

Example: Hill climbing for SAT

f = number of satisfied clauses
Neighbor: flip the assignment of one variable

State

(A=F, B=T, C=T, D=T, E=F)

Neighbors:

(A=T, B=T, C=T, D=T, E=F)
(A=F, B=F, C=T, D=T, E=F)
(A=F, B=T, C=F, D=T, E=F)
(A=F, B=T, C=T, D=F, E=F)
(A=F, B=T, C=T, D=T, E=T)

f

2

P PR R R

Av-BvC
—-AvCvD
BvDv-E
—-Cv-Dv-E
—-Av-CvVvE

Stuck

Is this the global
optimum?

Note: the recorded lecture incorrectly discussed

clauses with AND operators instead of OR slide 29

Repeated hill climbing with random restarts

Very simple modification

1. When stuck, pick a random new start, run basic
hill climbing from there.

2. Repeat this k times.
3. Return the best of the k local optima.

Can be very effective
Should be tried whenever hill climbing is used

slide 30

Variations of hill climbing

Question: How do we make hill climbing less greedy?

slide 31

Variations of hill climbing

Question: How do we make hill climbing less greedy?

= Stochastic hill climbing
« Randomly select among better neighbors
* The better, the more likely
* Pros / cons compared with basic hill climbing?

slide 32

Variations of hill climbing

Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

slide 33

Variations of hill climbing

Question: What if the neighborhood is too large to
enumerate? (e.g. N-queen if we need to pick both the
column and the move within it)

= First-choice hill climbing
« Randomly generate neighbors, one at a time
* If better, take the move
» Pros / cons compared with basic hill climbing?

slide 34

Variations of hill climbing

® We are still greedy! Only willing to move upwards.
® Important observation in life:

Sometimes one Sometimes one
needs to needs to move to an
temporarily step — | inferior neighbor Iin
back in order to order to escape a

move forward. local optimum.

slide 35

Variations of hill climbing

WALKSAT [Selman]

Pick a random unsatisfied clause
Consider 3 neighbors: flip each variable
If any improves f, accept the best
If none improves f:
= 50% of the time pick the least bad neighbor
= 50% of the time pick a random neighbor

This is the best known algorithm AX ﬂg v g
' ' —-Av CvVv
for satisfying Boolean formulae. 3Dy E
ﬁC V —/ D V ﬁE
ﬁA V ﬁC V E

slide 36

2. SIMULATED ANNEALING

slide 37

Simulated Annealing

anneal

To subject (glass or metal) to a process of heating
and slow cooling in order to toughen and reduce
brittleness.

slide 38

Simulated Annealing

o0k owhE

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€-t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

slide 39

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€-t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

o0k owhE

How to choose the small probability?
ideal:p=0.1 f

state

slide 40

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€-t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

o0k owhE

How to choose the small probability?
idea 1: p=0.1 f
idea 2: p decreases with time

state

slide 41

Simulated Annealing

Pick initial state s
Randomly pick t in neighbors(s)
IF f(t) better THEN accept s€-t.
ELSE /* tis worse than s */

accept s€t with a small probability
GOTO 2 until bored.

o0k owhE

How to choose the small probability?
idea 1: p=0.1 f
idea 2: p decreases with time
iIdea 3: p decreases with time,
also as the ‘badness’ [f(s)-f(t)|

Increases state

slide 42

Simulated Annealing

® If f(t) better than f(s), always accept t
¢ Otherwise, accept t with probability

exp(_ | f(s)—f(t) |j 4 Boltzmann

distribution
Temp

slide 43

Simulated Annealing

If f(t) better than f(s), always accept t
Otherwise, accept t with probability

exp(_ | f(s)—f(t) |j % Boltzmann

distribution
Temp

Temp is a temperature parameter that ‘cools’
(anneals) over time, e.g. Temp<Temp*0.9 which
glves Temp:(TO)#iteraﬂon

= High temperature: almost always accept any t
= Low temperature: first-choice hill climbing

If the ‘badness’ (formally known as energy difference)
If(s)-f(t)| is large, the probability is small.

slide 44

Simulated Annealing algorithm

/[assuming we want to maximize f()
current = Initial-State(problem)
fort=1to o do

T = Schedule(t) ; / T is the current temperature, which is
monotonically decreasing with t

If T=0 then return current ; // halt when temperature = 0
next = Select-Random-Successor-State(current)

deltak = f(next) - f(current) ; // If positive, next is better than
current. Otherwise, next is worse than current.

If deltaE > 0 then current = next ; // always move to a better
state

else current = next with probability p = exp(deltaE / T) ;
[[as T > 0, p =2 0; as deltak - -, p 20

end
slide 45

Simulated Annealing issues

Cooling scheme important

Neighborhood design is the real ingenuity, not the
decision to use simulated annealing.

Not much to say theoretically

= With infinitely slow cooling rate, finds global
optimum with probability 1.

Proposed by Metropolis in 1953 based on the
analogy that alloys manage to find a near global
minimum energy state, when annealed slowly.

Easy to implement.
Try hill-climbing with random restarts first!

slide 46

3. GENETIC
ALGORITHM

Image: Elliott Kalan, Marco
Failla/Marvel Comics

YOU CAN
REWRITE DNA ON THE
FLY, AND YOU'RE USING
IT TO TURN PEOPLE INTO
DINOSAURS? BUT WITH TECH
LIKE THAT, YOU COULD
CURE CANCER!

BUT I
DON'T WANT TO
CURE CANCER. T WANT
TO TURN PEOPLE INTO
DINOSAURS.

Evolution

Survival of the fittest, a.k.a. natural selection

Genes encoded as DNA (deoxyribonucleic acid), sequence of
bases: A (Adenine), C (Cytosine), T (Thymine) and G (Guanine)

The chromosomes from the parents exchange randomly by a
process called crossover. Therefore, the offspring exhibit some
traits of the father and some traits of the mother.

= Requires genetic diversity among the parents to ensure
sufficiently varied offspring

A rarer process called mutation also changes the genes (e.g.
spontaneous from radiation).

= QOrganisms with nonsensical/deadly mutated die.
= Beneficial mutations produce “stronger” organisms.
= Neither: organisms aren’t improved.

slide 48

Natural selection

Individuals compete for resources

Individuals with better genes have a larger chance to
produce offspring, and vice versa

After many generations, the population consists of
more genes from the superior individuals, and less
from the inferior individuals

Superiority defined by fithess to the environment
Popularized by Darwin, independently Wallace

slide 49

Genetic algorithm

Yet another Al algorithm based on real-world analogy
Yet another heuristic stochastic search algorithm

Each state s is called an individual. Often (carefully)
coded up as a string.

(32752411)

_~NWPRrOOO N®

The score f(s) is called the fitness of s. Our goal is to
find the global optimum (fittest) state.

At any time we keep a fixed number of states. They
are called the population. Similar to beam search.

slide 50

Individual encoding

° The “DNA”

¢ Satisfiability problem Av —BvC
ABCOB=TFTTY 508

° TSP Sl ok
A-E-D-C-B-F-G-H-A —~Av-CVvE

slide 51

Genetic algorithm

® Genetic algorithm: a special way to generate

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

32752411

24415124

32543213

(a)
Initial Population

slide 52

® Genetic algorithm: a special way to generate

Genetic algorithm

neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

24 31%

><

32752411 {
24415124 20 26%
32543213 11 14%

Number of non-
attacking pairs

(b)

Fitness Func

32752411

24?48552

32752411

24415124

Select_lon

prob. reproduction

oc fitness

slide 53

Genetic algorithm

® Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552

24 31%

><

32752411 {
24415124 20 26%
32543213 11 14%

Number of non-
attacking pairs

(b)
Fitness Func

32752411

327485527

24?48552

24752411

32752411

32752124

24415124

24415411

Select_lon

(d)

Cross—Over

prob. reproduction

oc fitness

—> Next generation

slide 54

Genetic algorithm

® Genetic algorithm: a special way to generate
neighbors, using the analogy of cross-over, mutation,
and natural selection.

24748552 | 24 31% [32752411 >_'_< 32748552 — 32749152

|

327752411 |23 2% 247548552 24752411 — 24752411

/

24415124 20 26% 32752411 H 32752124 — 3202124

32543213 11 14% 24415124 24415411 — 2441541[7]

(b) : (d) (e)
Initial Populatig Fitness Func Select_lon : Cross—Over Mutation

Number of non- prob. reproduction
attacking pairs oc fitness

—> Next generation

slide 55

Genetic algorithm (one variety)

Let s, ..., Sy be the current population

Let p; = f(s;) / Z; 1(s;) be the reproduction probability
FOR k = 1; k<N; k+=2

« parentl = randomly pick according to p

« parent2 = randomly pick another

« randomly select a crossover point, swap strings
of parents 1, 2 to generate children t[k], t[k+1]

FOR k = 1; k<=N: k++

« Randomly mutate each position in t[k] with a
small probability (mutation rate)

The new generation replaces the old: { s }<{t}.
Repeat until bored or state with good enough score.

slide 56

Proportional selection

° p=1(s) /i f(s)
* I f(s) = 5+20+11+8+6=50
* p,=5/50=10%

Individual | Fithess |Prob.
A 5 10%
B 20 40%
C 11 22%
D 8 16%
E 6 12%

slide 57

Genetic algorithm example

Scheduling summer courses

5courses: A,B,C,D, E

3 time slots (all day long): Mon/Wed, Tue/Thu, Fri/Sat

Students want to enroll in 3 courses

Courses

Students

ABC

2

ABD

-

ADE

3

BCD

4

BDE

10

CDE

5

Maximize students who can enroll in desired courses

slide 58

Genetic algorithm example

State: assign each course to a time slot
Courses: A, B,C,D, E
Time slots: M, T, F

M M F T M
A B C D E

= MMEFTM

Courses A, B, E scheduled Mon/Wed
Course D scheduled Tue/Thu
Course C scheduled Fri/Sat

slide 59

Genetic algorithm example

Scoring a state MMFTM

Courses | Students | Can enroll?
ABC 2 No
ABD 7 No
ADE 3 No
BCD 4 Yes
BDE 10 No
CDE) Yes

4+5=9 students can enroll in desired courses

slide 60

Genetic algorithm example

Randomly initialize and score states Coursealbciidents
MMFTM = 9 ABC 2
TTEMM = 4 250 |
AD E 3
FMTTF =19 BCD 4
MTTTF = 3 BDE | 10
CDE 5

Calculate reproduction probabilities
MMEFTM = 26%
TTFMM = 11%
FMTTEF = 54%
MTTTE = 9%

slide 61

Genetic algorithm example

Select parents using reproduction probabilities

MMFTM = 26% FMTTE
TTEFMM = 11% MMETM
FMTTF = 54% MTTTF
MTTTF = 9% FMTTEF
Cross-over to generate children
FMTTE FMFTM
MME'TM MMTTEF

slide 62

Genetic algorithm example

Randomly mutate new children

FMEFTM FMETT
MMTTFE MMTTFE
................ ‘
MMTTE MMTEE

slide 63

Genetic algorithm example

Score states in updated population = —
FMFTT = 11 ABC 2
MMTTF = 13 ABD !
ADE 3
MMTFF =4 BCD 4
FITTF =0 BDE | 10
CDE 5

Calculate reproduction probabilities
FMFTT = 39%

MMTTEFE = 46%
MMTFF = 14%
FTTTE = 0%

slide 64

Genetic algorithm example

Select parents using reproduction probabilities

FMEFTT = 39% > EMETT
MMTTF = 46% MMTEF
MMTEF = 14% FMETT
FTTTF = 0% MMTTF
Cross-over to generate children
FMFTT FMFTF
MMTEFRF MMTET

slide 65

Genetic algorithm example

Randomly mutate new children

FMETE FMETE
MMTFET FMTMT
................ ‘
FMTTE FMTME
MME'TT MME'TF

Continue Iiterating

slide 66

Variations of genetic algorithm

Parents may survive into the next generation

Use ranking instead of f(s) in computing the
reproduction probabilities

Cross over random bits instead of chunks

Optimize over sentences from a programming
language. Genetic programming.

slide 67

Genetic algorithm issues

State encoding is the real ingenuity, not the decision
to use genetic algorithm

Lack of diversity can lead to premature convergence
and non-optimal solution

Have to pick several parameters
= Population size, mutation rate, etc.

Not much to say theoretically

= Cross-over (sexual reproduction) much more
efficient than mutation (asexual reproduction).

Easy to implement
Try hill-climbing with random restarts first!

slide 68

