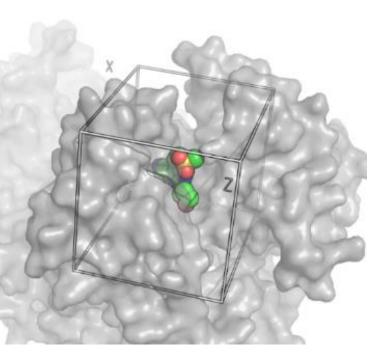
Al Applications Exploring a billion chemicals for drug discovery

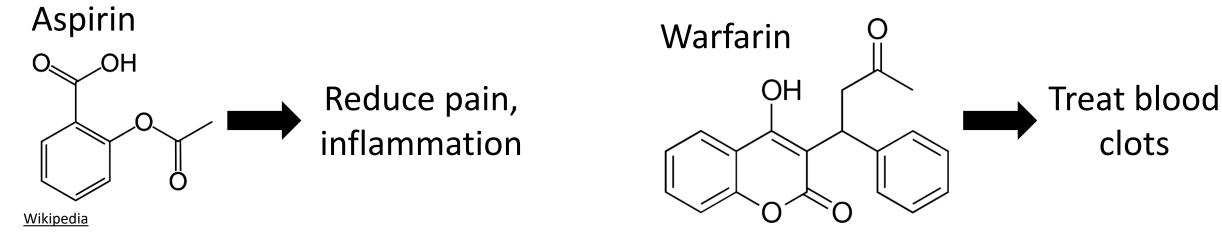
Anthony Gitter

gitter@biostat.wisc.edu

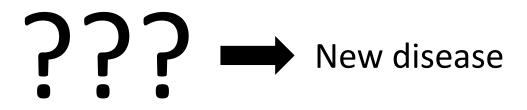
University of Wisconsin-Madison



Chemicals as drugs (medicines)

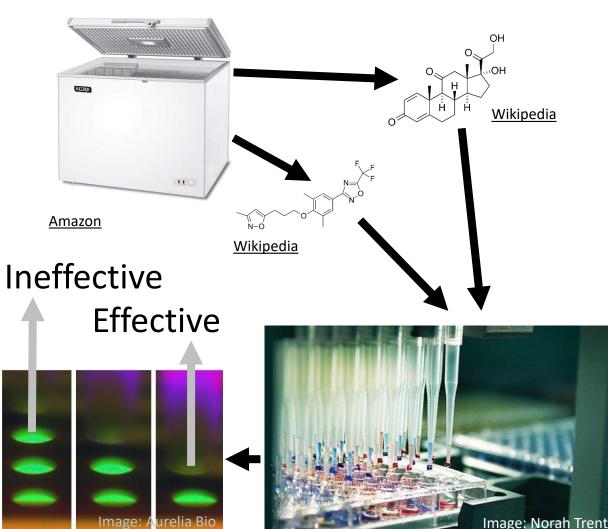


<u>Wikipedia</u>



Standard chemical screening

Drug discovery



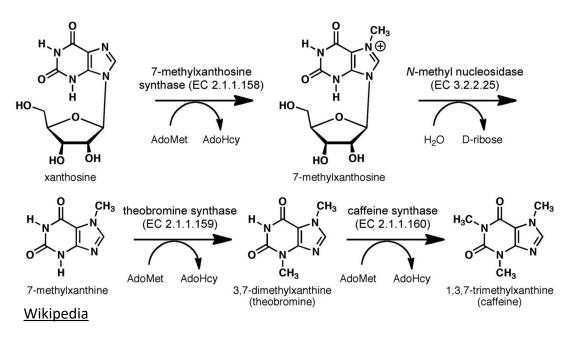
Wikipedia

<u>Wikipedia</u>

Exploring chemical recipes

Drug discovery

Culinary



Wikipedia

Serious Eats: Stephanie Cameron

Recipes for > 1 billion chemicals **Chemical synthesis**

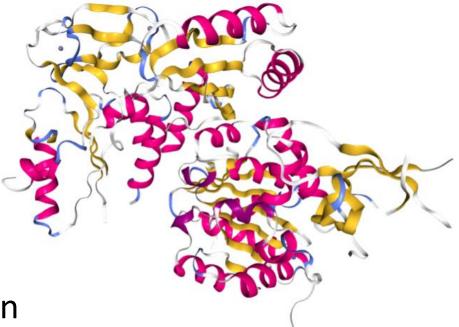
Machine learning to guide

French	-	Oats	-
Ethiopian	+	Chicken	+
Vietnamese	?	Saffron	?

Drug discovery case study: PriA-SSB

Image: Kateryna Kon

PriA bound to SSB (PDB:4NL8)



- Klebsiella pneumonia
- Bacterial protein-protein interaction
- DNA repair, recombination, and replication

Goal: block interaction, kill bacteria

Computational models prioritize chemicals

PriA-SSB binding assay

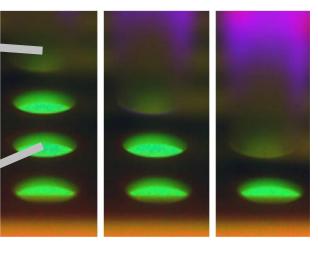
Effective

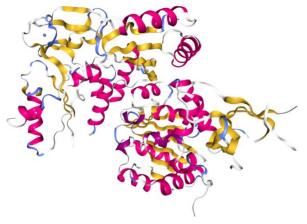
- \rightarrow blocked interaction
- \rightarrow active or "hit"

Ineffective

 \rightarrow proteins bind

 \rightarrow inactive



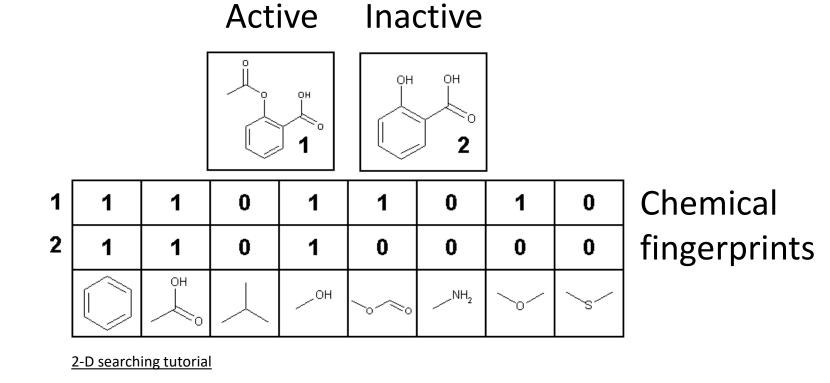


Test some initial chemicals

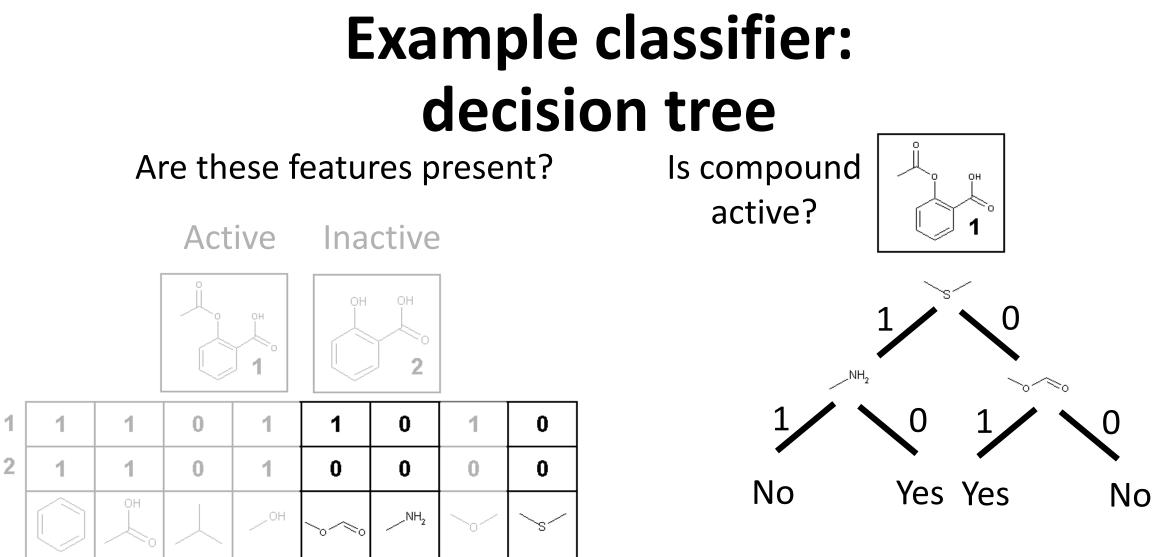
Prioritize remaining chemicals

- - NH CH OF THE

Formulating a classification problem



What distinguishes the active and inactive compounds?



Activity prediction

2-D searching tutorial

Combine many decision trees into random forest

Evaluating prospective performance

Train on <u>72k</u> chemicals, PriA-SSB inhibition labels
Only <u>79</u> active chemicals
Choose among many possible models, cross-validation
Best models select <u>250</u> of <u>22k</u> new chemicals

Compare many types of computational models

Protein structure-based

- 9 docking scores
- Consensus docking (Ericksen et al. JCIM 2017 DOI:10.1021/acs.jcim.7b00153)

Chemical-based

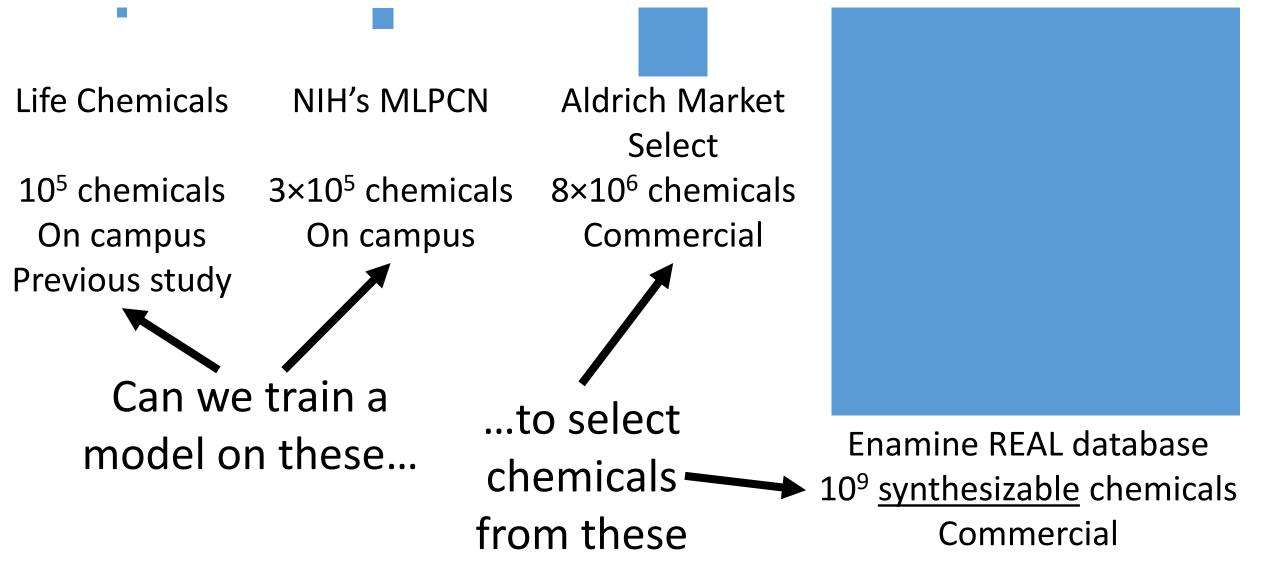
- Single-task supervised learning
- Multi-task supervised learning
- Chemical similarity baseline

Random forest performs best in prospective screen

Model	Actives	Actives not in baseline SIM clusters		MCS clusters
Experimental	54 👞	Only E4 o	27	
Similarity baseline	31	Only 54 e	i actives	
Consensus docking	0	0	0	0
STNN-C	21	2	11	13
STNN-R	28	8	14	18
MTNN-C	27	Random	forest is	17
LSTM	1	best o	best overall	
Random forest	37		17	22
IRV	29	4	15	18

Models select <u>250</u> of <u>22k</u> new chemicals

Available chemical libraries



Prioritizing 1 billion chemicals: Enamine REAL

Random forest model Trained on <u>427k</u> chemicals, PriA-SSB inhibition labels

> Predictions are fast: 18 jobs, 1 CPU and 6 GB RAM each, mean runtime 53h

Random forest selects <u>100</u> of <u>1 billion</u> new chemicals Only 68 of the 100 can be synthesized successfully

Enamine REAL is a major success 31 of the 68 chemicals are hits!

Chemical selection	Library	Lib	rary size	Chemicals tested	Hits	Hit rate
Entire library	Life Chemicals + MLPCN	42	27,000 351 tir	427,000 nes better hit	554 rate	0.13%
Random forest	Enamine REAL	1	billion	68	31	46%