
Deep Learning
Part I

Yin Li
yin.li@wisc.edu

University of Wisconsin, Madison

Some of the slides from Yingyu Liang, Marc'Aurelio Ranzato and others

Neural Networks / Deep Learning

• What type of functions shall we consider for f?

Chair
Features

+ Decision
𝑓𝑓(𝑥𝑥; 𝜃𝜃)

Proposal: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)
Example: 𝐚𝐚 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔(𝒙𝒙;𝑾𝑾,𝒃𝒃)

Neural network as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation

∗
x

𝑊𝑊(1)

+

𝑏𝑏(1)

∗ +

𝑊𝑊(2) 𝑏𝑏(2)

a

What prevent us from learning a deep network?

• Say 100 layers …

• Way too many parameters
• 𝐚𝐚 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔(𝒙𝒙;𝑾𝑾,𝒃𝒃)
• 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛, 𝑾𝑾 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, 𝒃𝒃 ∈ 𝑅𝑅𝑚𝑚, 𝒂𝒂 ∈ 𝑅𝑅𝑚𝑚
• If you have a high dimensional input (e.g., an image)

• Gradient descent does not quite work any more …

Deep learning: a sketch
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• General form for each layer 𝐚𝐚 = 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔 𝒙𝒙;𝑾𝑾,𝒃𝒃

• σ the activation function

• Key element: Linear operations + Nonlinear activations

Deep learning: a sketch
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: Linear operations + Nonlinear activations 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

m x n n x 1 m x 1

=+

m x 1

How to get the deep networks work?
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

• Which activation function to use?

• What linear function to use?

• The design of the network …

The choice of activation function

Sigmoid

𝑔𝑔 𝑥𝑥 = 1/(1 + exp(−𝑥𝑥))

𝑔𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)(1 − 𝑔𝑔(𝑥𝑥))

The choice of activation function
• Saturated neurons “kill” the gradients

• Exponential function is expensive

Sigmoid

𝑔𝑔 𝑥𝑥 = 1/(1 + exp(−𝑥𝑥))

𝑔𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)(1 − 𝑔𝑔(𝑥𝑥))

The choice of activation function
• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than
sigmoid in practice

• Differentiable?

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)

The choice of activation function

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than
sigmoid in practice

• Differentiable? Yes, if we fix 𝑓𝑓𝑔 0

The choice of activation function

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than
sigmoid in practice

• Differentiable? Yes, if we fix 𝑓𝑓𝑔 0

• Zero gradient in -region

The choice of activation function

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU

How to get the deep networks work?
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

• Which activation function to use?

• What linear function to use?

• The design of the network …

Convolution layer

• Use convolution in place of general matrix multiplication

for a specific kind of weight matrix 𝑾𝑾

• Strong empirical application performance

a = 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

Convolution

Convolution: discrete version

• Given array 𝑢𝑢𝑡𝑡 and 𝑤𝑤𝑡𝑡, their convolution is a function 𝑠𝑠𝑡𝑡

• Written as

• When 𝑢𝑢𝑡𝑡 or 𝑤𝑤𝑡𝑡 is not defined, assumed to be 0

𝑠𝑠𝑡𝑡 = �
𝑎𝑎=−∞

+∞

𝑢𝑢𝑎𝑎𝑤𝑤𝑡𝑡−𝑎𝑎

𝑠𝑠 = 𝑢𝑢 ∗ 𝑤𝑤 or 𝑠𝑠𝑡𝑡 = 𝑢𝑢 ∗ 𝑤𝑤 𝑡𝑡

Illustration 1

a b c d e f

x y z

xb+yc+zd
𝑤𝑤= [z, y, x]
𝑢𝑢 = [a, b, c, d, e, f]

𝑠𝑠3

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟏𝟏 𝒖𝒖𝟐𝟐 𝐮𝐮𝟑𝟑

Illustration 1

a b c d e f

x y z

xc+yd+ze
𝑠𝑠4

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟐𝟐 𝒖𝒖𝟑𝟑 𝐮𝐮𝟒𝟒

Illustration 1

a b c d e f

x y z

xd+ye+zf

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟑𝟑 𝒖𝒖𝟒𝟒 𝐮𝐮𝟓𝟓

𝑠𝑠5

Illustration 1: boundary case

a b c d e f

x y

xe+yf

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏

𝒖𝒖𝟒𝟒 𝐮𝐮𝟓𝟓

𝑠𝑠6

Illustration 1 as matrix multiplication

y z

x y z

x y z

x y z

x y z

x y

a

b

c

d

e

f

Illustration 2: two dimensional case

a b c d

e f g h

i j k l

w x

y z

wa + bx +
ey + fz

Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx +
fy + gz

wa + bx +
ey + fz

Kernel
(or filter)

Feature map

Input

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

• Each convolution kernel is a local pattern detector

• Use many of them in a convolutional layer!

Convolutional neural networks

• Strong empirical application performance

• Convolutional networks: neural networks that use convolution in
place of general matrix multiplication in at least one of their layers

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Fully connected layer, 𝑠𝑠 × 𝑛𝑛 edges

𝑠𝑠 output nodes

𝑛𝑛 input nodes

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer, ≤ 𝑠𝑠 × 𝑘𝑘 edges

𝑠𝑠 output nodes

𝑛𝑛 input nodes

𝑘𝑘 kernel size

Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Multiple convolutional layers: larger receptive field

7

7x7 input (spatially)
assume 3x3 filter

7

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

2D convolution: spatial dimensions

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output

2D convolution: spatial dimensions

	Slide Number 1
	Neural Networks / Deep Learning
	Neural network as a computational graph
	What prevent us from learning a deep network?
	Deep learning: a sketch
	Deep learning: a sketch
	How to get the deep networks work?
	The choice of activation function
	The choice of activation function
	The choice of activation function
	The choice of activation function
	The choice of activation function
	The choice of activation function
	How to get the deep networks work?
	Convolution layer
	Convolution
	Convolution: discrete version
	Illustration 1
	Illustration 1
	Illustration 1
	Illustration 1: boundary case
	Illustration 1 as matrix multiplication
	Illustration 2: two dimensional case
	Illustration 2
	Illustration 2
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Convolutional neural networks
	Advantage: sparse interaction
	Advantage: sparse interaction
	Advantage: sparse interaction
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions
	2D convolution: spatial dimensions

