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Neural Networks / Deep Learning

• What type of functions shall we consider for f?

Chair
Features

+ Decision
𝑓𝑓(𝑥𝑥; 𝜃𝜃)

Proposal: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)
Example: 𝐚𝐚 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔(𝒙𝒙;𝑾𝑾,𝒃𝒃)



Neural network as a computational graph

• A two-layer neural network
• Forward propagation vs. backward propagation

∗
x

𝑊𝑊(1)

+

𝑏𝑏(1)

∗ +

𝑊𝑊(2) 𝑏𝑏(2)

a



What prevent us from learning a deep network?

• Say 100 layers … 

• Way too many parameters
• 𝐚𝐚 = 𝑠𝑠𝑠𝑠𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔(𝒙𝒙;𝑾𝑾,𝒃𝒃)
• 𝒙𝒙 ∈ 𝑅𝑅𝑛𝑛, 𝑾𝑾 ∈ 𝑅𝑅𝑛𝑛×𝑚𝑚, 𝒃𝒃 ∈ 𝑅𝑅𝑚𝑚, 𝒂𝒂 ∈ 𝑅𝑅𝑚𝑚
• If you have a high dimensional input (e.g., an image)

• Gradient descent does not quite work any more …



Deep learning: a sketch
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• General form for each layer 𝐚𝐚 = 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃 = 𝑔𝑔 𝒙𝒙;𝑾𝑾,𝒃𝒃

• σ the activation function

• Key element: Linear operations  +  Nonlinear activations



Deep learning: a sketch
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: Linear operations  +  Nonlinear activations  𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃
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How to get the deep networks work?
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

• Which activation function to use?

• What linear function to use?

• The design of the network …



The choice of activation function

Sigmoid

𝑔𝑔 𝑥𝑥 = 1/(1 + exp(−𝑥𝑥))

𝑔𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)(1 − 𝑔𝑔(𝑥𝑥))



The choice of activation function
• Saturated neurons “kill” the gradients

• Exponential function is expensive

Sigmoid

𝑔𝑔 𝑥𝑥 = 1/(1 + exp(−𝑥𝑥))

𝑔𝑔𝑔 𝑥𝑥 = 𝑔𝑔(𝑥𝑥)(1 − 𝑔𝑔(𝑥𝑥))



The choice of activation function
• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than 
sigmoid in practice

• Differentiable?

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)
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The choice of activation function

ReLU
(Rectified Linear Unit)

f(x) = max(0, x)

• Does not saturate (in +region)

• Very computationally efficient

• Converges much faster than 
sigmoid in practice

• Differentiable? Yes, if we fix 𝑓𝑓𝑔 0

• Zero gradient in -region



The choice of activation function

Sigmoid

tanh

ReLU

Leaky ReLU

Maxout

ELU



How to get the deep networks work?
Deep Learning: Composing a set of (nonlinear) functions g

𝑓𝑓 𝒙𝒙;𝜽𝜽 = 𝑔𝑔1 …𝑔𝑔𝑛𝑛−1(𝑔𝑔𝑛𝑛 𝒙𝒙;𝜽𝜽𝒏𝒏 ,𝜽𝜽𝒏𝒏−𝟏𝟏 … ,𝜽𝜽𝟏𝟏)

Each of the function g is represented using a layer of a neural network

• Key element: 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃

• Which activation function to use?

• What linear function to use?

• The design of the network …



Convolution layer

• Use convolution in place of general matrix multiplication

for a specific kind of weight matrix 𝑾𝑾

• Strong empirical application performance

a = 𝜎𝜎 𝑾𝑾𝑻𝑻𝒙𝒙 + 𝒃𝒃



Convolution



Convolution: discrete version

• Given array 𝑢𝑢𝑡𝑡 and 𝑤𝑤𝑡𝑡, their convolution is a function 𝑠𝑠𝑡𝑡

• Written as 

• When  𝑢𝑢𝑡𝑡 or 𝑤𝑤𝑡𝑡 is not defined, assumed to be 0

𝑠𝑠𝑡𝑡 = �
𝑎𝑎=−∞

+∞

𝑢𝑢𝑎𝑎𝑤𝑤𝑡𝑡−𝑎𝑎

𝑠𝑠 = 𝑢𝑢 ∗ 𝑤𝑤 or 𝑠𝑠𝑡𝑡 = 𝑢𝑢 ∗ 𝑤𝑤 𝑡𝑡



Illustration 1

a b c d e f

x y z

xb+yc+zd
𝑤𝑤= [z, y, x]
𝑢𝑢 = [a, b, c, d, e, f]

𝑠𝑠3

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟏𝟏 𝒖𝒖𝟐𝟐 𝐮𝐮𝟑𝟑



Illustration 1

a b c d e f

x y z

xc+yd+ze
𝑠𝑠4

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟐𝟐 𝒖𝒖𝟑𝟑 𝐮𝐮𝟒𝟒



Illustration 1

a b c d e f

x y z

xd+ye+zf

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏 𝐰𝐰𝟎𝟎

𝐮𝐮𝟑𝟑 𝒖𝒖𝟒𝟒 𝐮𝐮𝟓𝟓

𝑠𝑠5



Illustration 1: boundary case

a b c d e f

x y

xe+yf

𝐰𝐰𝟐𝟐 𝐰𝐰𝟏𝟏

𝒖𝒖𝟒𝟒 𝐮𝐮𝟓𝟓

𝑠𝑠6



Illustration 1 as matrix multiplication

y z

x y z

x y z

x y z

x y z

x y

a

b

c

d

e

f



Illustration 2: two dimensional case

a b c d

e f g h

i j k l

w x

y z

wa + bx + 
ey + fz



Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx + 
fy + gz

wa + bx + 
ey + fz



Illustration 2

a b c d

e f g h

i j k l

w x

y z

bw + cx + 
fy + gz

wa + bx + 
ey + fz

Kernel 
(or filter)

Feature map

Input
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Slides Credit: Deep Learning Tutorial by Marc’Aurelio Ranzato

• Each convolution kernel is a local pattern detector

• Use many of them in a convolutional layer!



Convolutional neural networks

• Strong empirical application performance

• Convolutional networks: neural networks that use convolution in 
place of general matrix multiplication in at least one of their layers



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Fully connected layer, 𝑠𝑠 × 𝑛𝑛 edges

𝑠𝑠 output nodes

𝑛𝑛 input nodes



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Convolutional layer,  ≤ 𝑠𝑠 × 𝑘𝑘 edges

𝑠𝑠 output nodes

𝑛𝑛 input nodes

𝑘𝑘 kernel size



Advantage: sparse interaction

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Multiple convolutional layers: larger receptive field



7

7x7 input (spatially)  
assume 3x3 filter

7

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter

=> 5x5 output

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter
applied with stride 2

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter
applied with stride 2

2D convolution: spatial dimensions



7x7 input (spatially)  
assume 3x3 filter
applied with stride 2
=> 3x3 output

2D convolution: spatial dimensions
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