Summary of Clustering and Linear Models

CS 540

Yingyu Liang

Hierarchical Clustering

Hierarchical Clustering

- Input: data set $\{x_i\}$, a distance function between clusters
- Output: a hierarchy on the data points
- 1. Initialize each point as an individual cluster
- 2. Repeat until only one cluster remains:
 - Find the closest pair of clusters
 - Merge the pair into one cluster
- 3. Output the tree where leaves are the data points, and the internal nodes correspond to merges performed

Hierarchical Clustering

• Single-linkage: the shortest distance from any member of one cluster to any member of the other cluster. Formula:

 $d(A,B) = \min_{x \in A, y \in B} d(x,y)$

• Complete-linkage: the greatest distance from any member of one cluster to any member of the other cluster

 $d(A,B) = \max_{x \in A, y \in B} d(x,y)$

• Average-linkage: the average distance from any member of one cluster to any member of the other cluster

$$d(A,B) = \frac{1}{|A||B|} \sum_{x \in A, y \in B} d(x,y)$$

K-means Clustering

K-means Clustering: Objective

- Input: data set $\{x_i\}$ where each data point is a numeric feature vector in \mathbb{R}^d , the number of clusters k
- Would like to get a clustering with a small distortion

$$\min_{\substack{y(x_1), y(x_2), \dots, y(x_n) \\ c_1, c_2, \dots, c_k}} \sum_{x \in \{x_i\}} \left\| x - c_{y(x)} \right\|_2^2$$

K-means Clustering: Deriving the Algorithm

• If fix centers:

$$\min_{y(x_1), y(x_2), \dots, y(x_n)} \sum_{x \in \{x_i\}} \left\| x - c_{y(x)} \right\|_2^2$$

Only need to assign each point to its closest center

• If fix assignments:

$$\min_{c_1, c_2, \dots, c_k} \sum_{x \in \{x_i\}} \|x - c_{y(x)}\|_2^2$$

Only need to set each center to be the average of points in the cluster

K-means Clustering: Algorithm

- Input: data set $\{x_i \in \mathbb{R}^d\}$, number of clusters k
- Output: k clusters and their centers
- 1. Initialize k cluster centers
- 2. Repeat until convergence:
 - Assign each point to its closest center
 - Update each center to be the average of data points in the cluster
- 3. Output the k clusters and their centers

Linear Regression

Linear Regression: Model

- Input: data set $\{(x_i, y_i)\}$ where $x_i \in \mathbb{R}^{p+1}$, $y_i \in \mathbb{R}$
- Model: $y = f(x) = \beta^T x$, where $\beta \in \mathbb{R}^{p+1}$
- Assumption: there is ground truth β^* and the label is given by

 $y = (\beta^*)^T x + \epsilon$

where $\epsilon \sim N(0, \sigma^2)$.

Linear Regression: Deriving the Objective

• Maximum Likelihood Estimate (MLE) leads to Ordinary Least Squares (OLS) $\hat{\beta} = \operatorname{argmin}_{\beta} \|\boldsymbol{y} - \boldsymbol{X}\beta\|_{2}^{2}$

where $X \in \mathbb{R}^{n \times (p+1)}$ be a matrix where the *i*-th row is x_i and $y \in \mathbb{R}^n$ be a vector where the *i*-th entry is y_i

• Maximum A Posteriori (MAP) leads to Ridge Regression

 $\hat{\beta} = \operatorname{argmin}_{\beta} \|\boldsymbol{y} - \boldsymbol{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$

where $\lambda > 0$ is the regularization coefficient. $\lambda = 0$ leads to OLS.

Linear Regression: Solving the Optimization

• Ridge Regression

$$\hat{\beta} = \operatorname{argmin}_{\beta} \|\boldsymbol{y} - \boldsymbol{X}\beta\|_{2}^{2} + \lambda \|\beta\|_{2}^{2}$$

- Convex optimization
- Setting gradient to 0:

$$-2X^{T}\boldsymbol{y} + 2X^{T}X\boldsymbol{\beta} + 2\lambda\boldsymbol{\beta} = 0$$
$$\hat{\boldsymbol{\beta}} = (X^{T}X + \lambda I)^{-1}X^{T}\boldsymbol{y}$$

(OLS is the special case with $\lambda = 0$, so need $X^T X$ invertible)

Logistic Regression

Logistic Regression: Model

- Input: data set $\{(x_i, y_i)\}$ where $x_i \in \mathbb{R}^{p+1}, y_i \in \{+1, -1\}$
- Model: $p(y = +1|x) = \sigma(\theta^T x)$, where $\theta \in R^{p+1}$, $\sigma(z) = \frac{1}{1 + \exp(-z)}$
 - Can predict label +1, if $\sigma(\theta^T x) \ge 0.5$
- Assumption: there is ground truth θ^* and the label is given by

$$p(y = +1|x) = \sigma((\theta^*)^T x)$$

Logistic Regression: Deriving the Objective

• Maximum Likelihood Estimate (MLE) leads to:

$$\min_{\theta} \sum_{i} \log \left(1 + \exp(-y_i \theta^T x_i)\right)$$

• Maximum A Posteriori (MAP) leads to:

$$\min_{\boldsymbol{\theta}} \sum_{i} \log \left(1 + \exp(-y_i \boldsymbol{\theta}^T \boldsymbol{x}_i)\right) + \frac{\lambda}{2} \|\boldsymbol{\theta}\|_2^2$$

where $\lambda > 0$ is the regularization coefficient. $\lambda = 0$ leads to the MLE objective.

Logistic Regression: Solving the Optimization

• Regularized logistic regression:

$$\min_{\theta} \sum_{i} \log \left(1 + \exp(-y_i \theta^T x_i)\right) + \frac{\lambda}{2} \|\theta\|_2^2$$

- Convex optimization
- But no closed form solution; solve via (stochastic) gradient descent