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Hierarchical Clustering



Hierarchical Clustering

• Input: data set 𝑥𝑥𝑖𝑖 , a distance function between clusters
• Output: a hierarchy on the data points

1. Initialize each point as an individual cluster
2. Repeat until only one cluster remains:

• Find the closest pair of clusters
• Merge the pair into one cluster

3. Output the tree where leaves are the data points, and the internal 
nodes correspond to merges performed



Hierarchical Clustering

• Single-linkage: the shortest distance from any member of one cluster 
to any member of the other cluster.  Formula: 

• Complete-linkage: the greatest distance from any member of one 
cluster to any member of the other cluster

• Average-linkage: the average distance from any member of one 
cluster to any member of the other cluster

𝑑𝑑 𝐴𝐴,𝐵𝐵 = min
𝑥𝑥∈𝐴𝐴,𝑦𝑦∈𝐵𝐵

𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑑𝑑 𝐴𝐴,𝐵𝐵 = max
𝑥𝑥∈𝐴𝐴,𝑦𝑦∈𝐵𝐵

𝑑𝑑(𝑥𝑥,𝑦𝑦)

𝑑𝑑 𝐴𝐴,𝐵𝐵 =
1

𝐴𝐴 |𝐵𝐵|
∑

𝑥𝑥∈𝐴𝐴,𝑦𝑦∈𝐵𝐵
𝑑𝑑(𝑥𝑥,𝑦𝑦)



K-means Clustering



K-means Clustering: Objective

• Input: data set 𝑥𝑥𝑖𝑖 where each data point is a numeric feature vector 
in 𝑅𝑅𝑑𝑑, the number of clusters 𝑘𝑘

• Would like to get a clustering with a small distortion

min
𝑦𝑦 𝑥𝑥1 ,𝑦𝑦 𝑥𝑥2 ,…,𝑦𝑦 𝑥𝑥𝑛𝑛

𝑐𝑐1,𝑐𝑐2,…,𝑐𝑐𝑘𝑘

�
𝑥𝑥∈{𝑥𝑥𝑖𝑖}

𝑥𝑥 − 𝑐𝑐𝑦𝑦 𝑥𝑥 2
2



K-means Clustering: Deriving the Algorithm

• If fix centers:

Only need to assign each point to its closest center
• If fix assignments:

Only need to set each center to be the average of points in the cluster

min
𝑦𝑦 𝑥𝑥1 ,𝑦𝑦 𝑥𝑥2 ,…,𝑦𝑦 𝑥𝑥𝑛𝑛

�
𝑥𝑥∈{𝑥𝑥𝑖𝑖}

𝑥𝑥 − 𝑐𝑐𝑦𝑦 𝑥𝑥 2
2

min
𝑐𝑐1,𝑐𝑐2,…,𝑐𝑐𝑘𝑘

�
𝑥𝑥∈{𝑥𝑥𝑖𝑖}

𝑥𝑥 − 𝑐𝑐𝑦𝑦 𝑥𝑥 2
2



K-means Clustering: Algorithm

• Input: data set 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑑𝑑 , number of clusters 𝑘𝑘
• Output: 𝑘𝑘 clusters and their centers

1. Initialize 𝑘𝑘 cluster centers
2. Repeat until convergence:

• Assign each point to its closest center
• Update each center to be the average of data points in the cluster

3. Output the 𝑘𝑘 clusters and their centers



Linear Regression



Linear Regression: Model

• Input: data set (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) where 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦𝑖𝑖 ∈ 𝑅𝑅
• Model: 𝑦𝑦 = 𝑓𝑓 𝑥𝑥 = 𝛽𝛽𝑇𝑇𝑥𝑥, where 𝛽𝛽 ∈ 𝑅𝑅𝑝𝑝+1

• Assumption: there is ground truth 𝛽𝛽∗ and the label is given by

𝑦𝑦 = 𝛽𝛽∗ 𝑇𝑇𝑥𝑥 + 𝜖𝜖
where 𝜖𝜖 ∼ 𝑁𝑁(0,𝜎𝜎2).



Linear Regression: Deriving the Objective

• Maximum Likelihood Estimate (MLE) leads to Ordinary Least Squares (OLS) 

�̂�𝛽 = argmin𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2
2

where 𝑋𝑋 ∈ 𝑅𝑅𝑛𝑛×(𝑝𝑝+1) be a matrix where the 𝑖𝑖-th row is 𝑥𝑥𝑖𝑖
and 𝒚𝒚 ∈ 𝑅𝑅𝑛𝑛 be a vector where the 𝑖𝑖-th entry is 𝑦𝑦𝑖𝑖

• Maximum A Posteriori (MAP) leads to Ridge Regression 

�̂�𝛽 = argmin𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2
2 + 𝜆𝜆 𝛽𝛽 2

2

where 𝜆𝜆 > 0 is the regularization coefficient. 𝜆𝜆 = 0 leads to OLS.



Linear Regression: Solving the Optimization

• Ridge Regression 

�̂�𝛽 = argmin𝛽𝛽 𝒚𝒚 − 𝑋𝑋𝛽𝛽 2
2 + 𝜆𝜆 𝛽𝛽 2

2

• Convex optimization
• Setting gradient to 0: 

−2𝑋𝑋𝑇𝑇𝒚𝒚 + 2𝑋𝑋𝑇𝑇𝑋𝑋𝛽𝛽 + 2𝜆𝜆𝛽𝛽 = 0

�̂�𝛽 = 𝑋𝑋𝑇𝑇𝑋𝑋 + 𝜆𝜆𝜆𝜆 −1𝑋𝑋𝑇𝑇𝒚𝒚

(OLS is the special case with 𝜆𝜆 = 0, so need 𝑋𝑋𝑇𝑇𝑋𝑋 invertible)



Logistic Regression



Logistic Regression: Model

• Input: data set (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖) where 𝑥𝑥𝑖𝑖 ∈ 𝑅𝑅𝑝𝑝+1,𝑦𝑦𝑖𝑖 ∈ {+1,−1}

• Model: 𝑝𝑝 𝑦𝑦 = +1 𝑥𝑥 = 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥 , where 𝜃𝜃 ∈ 𝑅𝑅𝑝𝑝+1,𝜎𝜎 𝑧𝑧 = 1
1+exp(−𝑧𝑧)

• Can predict label +1, if 𝜎𝜎 𝜃𝜃𝑇𝑇𝑥𝑥 ≥ 0.5

• Assumption: there is ground truth 𝜃𝜃∗ and the label is given by

𝑝𝑝 𝑦𝑦 = +1 𝑥𝑥 = 𝜎𝜎 (𝜃𝜃∗)𝑇𝑇𝑥𝑥



Logistic Regression: Deriving the Objective

• Maximum Likelihood Estimate (MLE) leads to:

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖))

• Maximum A Posteriori (MAP) leads to:

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖)) +
𝜆𝜆
2

𝜃𝜃 2
2

where 𝜆𝜆 > 0 is the regularization coefficient. 𝜆𝜆 = 0 leads to the MLE objective.



Logistic Regression: Solving the Optimization

• Regularized logistic regression:  

min
𝜽𝜽

�
𝒊𝒊

log (1 + exp(−𝑦𝑦𝑖𝑖𝜃𝜃𝑇𝑇𝑥𝑥𝑖𝑖)) +
𝜆𝜆
2

𝜃𝜃 2
2

• Convex optimization
• But no closed form solution; solve via (stochastic) gradient descent
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