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Hierarchical Clustering



Hierarchical Clustering

* Input: data set {x;}, a distance function between clusters
e Qutput: a hierarchy on the data points

1. Initialize each point as an individual cluster

2. Repeat until only one cluster remains:
* Find the closest pair of clusters
* Merge the pair into one cluster

3. Output the tree where leaves are the data points, and the internal
nodes correspond to merges performed



Hierarchical Clustering

* Single-linkage: the from any member of one cluster
to any member of the other cluster. Formula:

d(A,B) = min d(x,y)

_ X€EA,YEB
* Complete-linkage: the from any member of one

cluster to any member of the other cluster
d(A,B) = max d(x,y)

XEA,YEB
* Average-linkage: the from any member of one
cluster to any member of the other cluster

d(A,B) =

2, d(x,y)

|A| |B| XEA,YyEB



K-means Clustering



K-means Clustering: Objective

* Input: data set {x;} where each data point is a numeric feature vector
in R4, the number of clusters k

* Would like to get a clustering with a small distortion
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K-means Clustering: Deriving the Algorithm

 If fix centers:

- 2
Y (ea) Y Gy Gen) Z [l = CY(’C)HZ

xe{x;i}
Only need to assigh each point to its closest center
* If fix assignments:

_min > lx =y

xe{x;}

Only need to set each center to be the average of points in the cluster



K-means Clustering: Algorithm

* Input: data set {x; € R%}, number of clusters k
e OQutput: k clusters and their centers

1. Initialize k cluster centers

2. Repeat until convergence:

* Assign each point to its closest center
* Update each center to be the average of data points in the cluster

3. Output the k clusters and their centers



Linear Regression



Linear Regression: Model

* Input: data set {(x;, v;)} where x; € RP*! y; € R
e Model: y = f(x) = B'x, where § € RP*!

e Assumption: there is ground truth 5 and the label is given by

y= (B)'x+e
where e ~ N(0,0%).



Linear Regression: Deriving the Objective

 Maximum Likelihood Estimate (MLE) leads to Ordinary Least Squares (OLS)
B = argming |ly — XBI|3

where X € R™(®*+1 pe a matrix where the i-th row is x;
and y € R" be a vector where the i-th entry is y;

 Maximum A Posteriori (MAP) leads to Ridge Regression
B = argming [ly — XB|I5 + Al 3113

where 4 > 0 is the regularization coefficient. 4 = 0 leads to OLS.



Linear Regression: Solving the Optimization

* Ridge Regression
B = argming |ly — X815 + AlIB1I5

* Convex optimization

 Setting gradient to O:
—2XTy +2XTXB+ 228 =0
B=&"X+AD)"XTy

(OLS is the special case with A = 0, so need X' X invertible)



Logistic Regression



Logistic Regression: Model

* Input: data set {(x;, y;)} where x; € RP™1 y. € {+1,—1}
e Model: p(y = +1|x) = d(8"x), where 0 € RP*1, 5(2) =
* Can predict label +1, if 6(87x) = 0.5

1
1+exp(—2z)

e Assumption: there is ground truth 6" and the label is given by

p(y = +1|x) = o((6")"x)



Logistic Regression: Deriving the Objective

 Maximum Likelihood Estimate (MLE) leads to:
min 2 log (1 + exp(—y;0"x;))
i
* Maximum A Posteriori (MAP) leads to:

A
mgn 2 log (1 + exp(—y;07x;)) + 5 1615
i

where 4 > 0 is the regularization coefficient. 4 = 0 leads to the MLE objective.



Logistic Regression: Solving the Optimization

* Regularized logistic regression:
: T A 2
min Z log (1 + exp(—y;0" x;)) + ) 16115
i

* Convex optimization
* But no closed form solution; solve via (stochastic) gradient descent
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