Yingyu Liang UW-Madison

Joint work with Jiefeng Chen, Xi Wu, Vaibhav Rastogi, and Somesh Jha Appear in NeurIPS'2019

Machine Learning Progress

Significant progress in Machine Learning

Computer vision

Machine translation

Game Playing

Medical Imaging

Key Engine Behind the Success

- Training Deep Neural Networks: y = f(x; W)
 - Given training data $\{(x_1, y_1), (x_2, y_2), ..., (x_n, y_n)\}$
 - Try to find W such that the network fits the data

Indoor

Challenges

• Blackbox: not too much understanding/interpretation

Vulnerable to adversaries

Interpretable Machine Learning

• Attribution task: Given a model and an input, compute an attribution map measuring the importance of different input dimensions

Integrated Gradient: Axiomatic Approach

Overview

- List desirable criteria (axioms) for an attribution method
- Establish a uniqueness result: only this method satisfies these desirable criteria
- Inspired by economics literature: *Values of Non-Atomic Games*. Aumann and Shapley, 1974.

Integrated Gradient: Example Results

Top label: jackfruit Score: 0.99591

Top label: school bus

Score: 0.997033

Original image

Original image

Original image

Integrated gradients

Integrated gradients

Integrated gradients

Attribution is Fragile

Interpretation of Neural Networks is Fragile. Amirata Ghorbani, Abubakar Abid, James Zou. AAAI 2019.

• Training for robust attribution: find a model that can get similar attributions for all perturbed images around the training image

n

• Training for robust attribution: find a model that can get similar attributions for all perturbed images around the training image

$$\operatorname{nin}_{\theta} \mathbb{E}[l(\boldsymbol{x}, \boldsymbol{y}; \theta) + \lambda * \operatorname{RAR}]$$
$$\operatorname{RAR} = \max_{\boldsymbol{x}' \in \Delta(\boldsymbol{x})} s(\operatorname{IG}(\boldsymbol{x}, \boldsymbol{x}'))$$
Size function Integrated Gradient

• Training for robust attribution: find a model that can get similar attributions for all perturbed images around the training image

$$\min_{\theta} \mathbb{E}[l(\mathbf{x}, y; \theta) + \lambda * RAR]$$

$$RAR = \max_{x' \in \Delta(x)} s(IG(x, x'))$$

• Two instantiations:

$$|\text{G-NORM} = \max_{x' \in \Delta(x)} ||\text{IG}(x, x')||_1$$

 $\mathsf{IG-SUM}-\mathsf{NORM} = \max_{x' \in \Delta(x)} \big| |\mathsf{IG}(x, x')| \big|_1 + \operatorname{sum}(\mathsf{IG}(x, x'))$

Experiments: Qualitative

Flower dataset

Experiments: Qualitative

MNIST dataset

Experiments: Qualitative

GTSRB dataset

Experiments: Quantitative

- Metrics for attribution robustness
 - 1. Kendall's tau rank order correlation
 - 2. Top-K intersection

Original Image Attribution Map

Perturbed Image Attribution Map

Top-1000 Intersection: 0.1% Kendall's Correlation: 0.2607

Result on Flower dataset

Result on MINST dataset

Result on GTSRB dataset

