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Reinforcement Learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn



Reinforcement Learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one



RL: Example
• AlphaGo and AlphaZero

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/


RL: Example
• AI for video games

Video

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

https://youtu.be/cjpEIotvwFY
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


RL: Example
• AI for video games

O. Vinyals, I. Babuschkin, W.M. Czarnecki et al. 
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019

https://www.nature.com/articles/s41586-019-1724-z


RL: Example
• End-to-end training of visuomotor policies

Video

S. Levine, C. Finn, T. Darrell and P. Abbeel. 
End-to-End Training of Deep Visuomotor Policies. JMLR 2016

https://sites.google.com/site/visuomotorpolicy/
http://arxiv.org/abs/1504.00702


Reinforcement Learning (RL)
• Agent can take actions that affect the state of 

the environment and observe occasional 
rewards that depend on the state
• set of states S
• set of actions A
• at each time t, agent observes state st∈ S and 

receives reward rt 

• then chooses action at ∈ A  and changes to state st+1

agent

environment

state reward action



Reinforcement Learning (RL)
• Agent can take actions that affect the state of 

the environment and observe occasional 
rewards that depend on the state

• The goal is to learn a mapping from states to 
actions (policy) to maximize expected reward 
over time

agent

environment

state reward action



Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to 
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on 
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

s0 s1 s2

a0 a1 a2

r0 r1 r2



Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to 
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on 
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in 
any given state
• The “solution” to an MDP



Example MDP: Grid world
• Goal: find the best policy

Source: P. Abbeel and D. Klein 



Example MDP: Grid world

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein 

• With an unreliable robot



Example MDP: Grid world

𝑟𝑟(𝑠𝑠) = −0.04 for every 
non-terminal state

Source: P. Abbeel and D. Klein 

• Reach the target quickly



Example MDP: Grid world

r(s) = -0.04 for every 
non-terminal state

Transition model:



Example MDP: Grid world

Optimal policy when 
r(s) = -0.04 for every 
non-terminal state



Example MDP: Grid world
• Optimal policies for various values of 𝑟𝑟(𝑠𝑠):
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• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to 
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on 
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in 
any given state
• The “solution” to an MDP
• How to find the best policy?



Defining the optimal policy
• Given a policy π, we can define the expected 

utility over all possible state sequences from 
𝑠𝑠0 produced by following that policy:

• The value function of 𝑠𝑠0 w.r.t. policy 𝜋𝜋
• The optimal policy should maximize this utility

𝑉𝑉𝜋𝜋 𝑠𝑠0 = �

sequences
starting from 𝑠𝑠0

𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)



Defining the optimal policy
• Given a policy π, we can define the expected 

utility over all possible state sequences from 
𝑠𝑠0 produced by following that policy:

• The value function of 𝑠𝑠0 w.r.t. policy 𝜋𝜋
• The optimal policy should maximize this utility
• How to define the utility of a state sequence?

• Sum of rewards of individual states
• Problem: infinite state sequences

𝑉𝑉𝜋𝜋 𝑠𝑠0 = �

sequences
starting from 𝑠𝑠0
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Discounted rewards
• To define the utility of a state sequence, 

discount the individual state rewards by a 
factor γ between 0 and 1:
𝑈𝑈 𝑠𝑠0, 𝑠𝑠1, … = 𝑟𝑟 𝑠𝑠0 + 𝛾𝛾 𝑟𝑟 𝑠𝑠1 + 𝛾𝛾2𝑟𝑟 𝑠𝑠2 + ⋯

= �
𝑡𝑡≥0

𝛾𝛾𝑡𝑡 𝑟𝑟 𝑠𝑠𝑡𝑡

Image source: P. Abbeel and D. Klein 



Discounted rewards
• To define the utility of a state sequence, 

discount the individual state rewards by a 
factor γ between 0 and 1:
𝑈𝑈 𝑠𝑠0, 𝑠𝑠1, … = 𝑟𝑟 𝑠𝑠0 + 𝛾𝛾 𝑟𝑟 𝑠𝑠1 + 𝛾𝛾2𝑟𝑟 𝑠𝑠2 + ⋯

= �
𝑡𝑡≥0

𝛾𝛾𝑡𝑡 𝑟𝑟 𝑠𝑠𝑡𝑡 ≤
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

1 − 𝛾𝛾

• Sooner rewards count more than later rewards
• Makes sure the total utility stays bounded

• How to find the policy maximizing the value 
function – the expected sum of discounted 
rewards?



The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• Define state utility 𝑉𝑉∗ 𝑠𝑠 as the expected 
sum of discounted rewards if the agent 
executes an optimal policy starting in state s

Image source: L. Lazbenik



The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the expected utility of taking action a
in state s?

�
𝑠𝑠𝑠

𝑃𝑃(𝑠𝑠𝑠|𝑠𝑠,𝑎𝑎)𝑉𝑉∗ 𝑠𝑠′

Image source: L. Lazbenik



The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• How do we choose the optimal action?

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)
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The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the recursive expression for 𝑉𝑉∗ 𝑠𝑠 in 
terms of 𝑉𝑉∗ 𝑠𝑠′ - the utilities of its successors?
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The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)
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Image source: L. Lazbenik



The Bellman equation

• Recursive relationship between optimal 
values of successive states:

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Reward in 
current state

Discounted expected future reward 
assuming agent follows the optimal policy

Image source: L. Lazbenik



The Bellman equation
• Recursive relationship between optimal 

values of successive states:

• The best policy to the MDP from 𝑠𝑠0 is given 
by 𝑉𝑉∗ 𝑠𝑠

• The solution is 

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)



The Bellman equation
• Recursive relationship between optimal 

values of successive states:

• The best policy to the MDP from 𝑠𝑠0 is given 
by 𝑉𝑉∗ 𝑠𝑠

• The solution is 

• If we know 𝑟𝑟 𝑠𝑠 and 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 , how can we 
compute 𝑉𝑉∗ 𝑠𝑠 ?

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)



Value iteration
• Start out with every V0 𝑠𝑠 = 0
• Iterate until convergence

• During the ith iteration, update the utility of each 
state according to the equation:

• With infinitely many iterations, guaranteed to 
find the correct utility values 𝑉𝑉∗ 𝑠𝑠
• Even if we randomly traverse environment instead 

of looping through each state and action
• In practice, don’t need infinitely many iterations…

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)



Value iteration
What effect does the update have?

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)

r(s) = 0 for every non-
terminal state

Transition model:



Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0
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Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0



Value iteration: Recap
• Start out with every V0 𝑠𝑠 = 0
• Iterate until convergence

• During the ith iteration, update the utility of each 
state according to the Bellman equation:

• Assuming that we know the model of the 
world 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎

• What if we don’t?

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)



Q-learning: a sketch
• Idea: learn how to act without explicitly 

learning the transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function 

Q(s,a) that tells us the value of doing action 
a in state s

• Relationship between Q-values and utilities:

• With Q-values, you don’t need the transition 
model to select the next action:

𝑉𝑉∗ 𝑠𝑠 = max𝑎𝑎𝑄𝑄 𝑠𝑠,𝑎𝑎

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎𝑄𝑄 𝑠𝑠,𝑎𝑎



Exploration vs. exploitation

Source: Berkeley CS188



Exploration vs. exploitation
Exploration: take an action with unknown consequences

• Pros: 
– Get a more accurate model of the environment
– Discover higher-reward states than the ones found so far

• Cons: 
– When you’re exploring, you’re not maximizing your utility
– Something bad might happen

Exploitation: go with the best strategy found so far
• Pros:

– Maximize reward as reflected in the current utility estimates
– Avoid bad stuff

• Cons: 
– Might also prevent you from discovering the true optimal 

strategy



Summary
• Reinforcement learning task
• Markov decision process
• Value functions & Bellman equation
• Value iteration
• Optional: Q-learning idea
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