Introduction to Reinforcement Learning

Yin Li

yin.li@wisc.edu

University of Wisconsin, Madison

[Based on slides from Lana Lazebnik, Yingyu Liang, David Page, Mark Craven, Peter Abbeal, Daniel Klein]

Reinforcement Learning (RL)

Task of an agent embedded in an environment repeat forever

- 1) sense world
- 2) reason
- 3) choose an action to perform
- 4) get feedback (usually reward = 0)
- 5) learn

Reinforcement Learning (RL)

Task of an agent embedded in an environment repeat forever

- 1) sense world
- 2) reason
- 3) choose an action to perform
- 4) get feedback (usually reward = 0)
- 5) learn

the environment may be the physical world or an artificial one

AlphaGo and AlphaZero

https://deepmind.com/research/alphago/

• Al for video games

<u>Video</u>

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, <u>Human-level control through deep reinforcement learning</u>, *Nature* 2015

• Al for video games

O. Vinyals, I. Babuschkin, W.M. Czarnecki et al.

Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019

• End-to-end training of visuomotor policies

Fig. 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

<u>Video</u>

S. Levine, C. Finn, T. Darrell and P. Abbeel. End-to-End Training of Deep Visuomotor Policies. JMLR 2016

Reinforcement Learning (RL)

- Agent can take actions that affect the state of the environment and observe occasional rewards that depend on the state
 - set of states *S*
 - set of actions A
 - at each time *t*, agent observes state $s_t \in S$ and receives reward r_t
 - then chooses action $a_t \in A$ and changes to state s_{t+1}

Reinforcement Learning (RL)

- Agent can take actions that affect the state of the environment and observe occasional rewards that depend on the state
- The goal is to learn a mapping from states to actions (*policy*) to maximize expected reward over time

Formalism: Markov Decision Processes

- States S, beginning with initial state s_0
- Actions A
- Transition model $P(s_{t+1} | s_t, a_t)$
 - *Markov assumption*: the probability of going to s_{t+1} from s_t depends only on s_t and a_t and not on any other past actions or states
- Reward function $r(s_t)$

Formalism: Markov Decision Processes

- States S, beginning with initial state s_0
- Actions A
- Transition model $P(s_{t+1} | s_t, a_t)$
 - *Markov assumption*: the probability of going to s_{t+1} from s_t depends only on s_t and a_t and not on any other past actions or states
- Reward function $r(s_t)$
- **Policy** $\pi(s) : S \to A$ the action that an agent takes in any given state
 - The "solution" to an MDP

• Goal: find the best policy

• With an unreliable robot

Transition model:

• Reach the target quickly

r(s) = -0.04 for every non-terminal state

Optimal policy when r(s) = -0.04 for every non-terminal state

• Optimal policies for various values of r(s):

R(s) < -1.6284

-0.4278 < R(s) < -0.0850

R(s) > 0

Formalism: Markov Decision Processes

- States S, beginning with initial state s_0
- Actions A
- Transition model $P(s_{t+1} | s_t, a_t)$
 - *Markov assumption*: the probability of going to s_{t+1} from s_t depends only on s_t and a_t and not on any other past actions or states
- Reward function $r(s_t)$
- **Policy** $\pi(s) : S \to A$ the action that an agent takes in any given state
 - The "solution" to an MDP

Formalism: Markov Decision Processes

- States S, beginning with initial state s_0
- Actions A
- Transition model $P(s_{t+1} | s_t, a_t)$
 - *Markov assumption*: the probability of going to s_{t+1} from s_t depends only on s_t and a_t and not on any other past actions or states
- Reward function $r(s_t)$
- **Policy** $\pi(s) : S \to A$ the action that an agent takes in any given state
 - The "solution" to an MDP
 - How to find the best policy?

Defining the optimal policy

 Given a policy π, we can define the *expected utility* over all possible state sequences from s₀ produced by following that policy:

$$V^{\pi}(s_0) = \sum P(sequence)U(sequence)$$

sequences starting from s₀

- The value function of s_0 w.r.t. policy π
- The optimal policy should maximize this utility

Defining the optimal policy

 Given a policy π, we can define the *expected utility* over all possible state sequences from s₀ produced by following that policy:

$$V^{\pi}(s_0) = \sum P(sequence)U(sequence)$$

sequences starting from s₀

- The value function of s_0 w.r.t. policy π
- The optimal policy should maximize this utility
- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences

Discounted rewards

 To define the utility of a state sequence, discount the individual state rewards by a factor γ between 0 and 1:

$$U(s_0, s_1, \dots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \cdots$$
$$= \sum_{t \ge 0} \gamma^t r(s_t)$$

 γ^2

Worth Next Step

Worth In Two Steps

Discounted rewards

 To define the utility of a state sequence, discount the individual state rewards by a factor γ between 0 and 1:

$$U(s_0, s_1, ...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \cdots$$

= $\sum_{t \ge 0} \gamma^t r(s_t) \le \frac{r_{max}}{1 - \gamma}$

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- How to find the policy maximizing the value function – the expected sum of discounted rewards?

 Define state utility V*(s) as the expected sum of discounted rewards if the agent executes an optimal policy starting in state s

What is the expected utility of taking action a in state s?

$$\sum_{s'} P(s'|s,a) V^*(s')$$

• How do we choose the optimal action?

$$\pi^*(s) = \arg\max_a \sum_{s'} P(s'|s,a) V^*(s')$$

Image source: L. Lazbenik

 What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^{*}(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi^{*}(s)) V^{*}(s')$$

Image source: L. Lazbenik

 What is the recursive expression for V*(s) in terms of V*(s') - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

Recursive relationship between optimal values of successive states:

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a)V^{*}(s')$$
Reward in
current state
Discounted expected future reward
assuming agent follows the optimal policy

Recursive relationship between optimal values of successive states:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$$

- The best policy to the MDP from s₀ is given by V*(s)
- The solution is $\pi^*(s) = \arg \max_a \sum_i P(s'|s, a)V^*(s')$

Recursive relationship between optimal values of successive states:

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s,a) V^*(s')$$

- The best policy to the MDP from s₀ is given by V*(s)
- The solution is $\pi^*(s) = \arg \max_a \sum P(s'|s, a)V^*(s')$
- If we know r(s) and P(s'|s, a), how can we compute V*(s)?

Value iteration

- Start out with every $V_0(s) = 0$
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to the equation:

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

- With infinitely many iterations, guaranteed to find the correct utility values V*(s)
 - Even if we randomly traverse environment instead of looping through each state and action
 - In practice, don't need infinitely many iterations...

Value iteration

What effect does the update have?

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

C Gridworld Display				
0.00	•	•	0.00	
0.00		0.00	0.00	
		^		
0.00	0.00	0.00	0.00	
VALUES AFTER O ITERATIONS				

C O Gridworld Display				
0.00	•	0.00 →	1.00	
•		∢ 0.00	-1.00	
•	•	•	0.00	
			•	
VALUES AFTER 1 ITERATIONS				

00	Gridworld Display				
	•	0.00)	0.72 →	1.00	
			^		
	0.00		0.00	-1.00	
	^	^	^		
	0.00	0.00	0.00	0.00	
	VALUES AFTER 2 ITERATIONS				

00	0	Gridworl	d Display		
	0.00)	0.52 →	0.78)	1.00	
	0.00		0.43	-1.00	
		^			
	0.00	0.00	0.00	0.00	
				•	
	VALUES AFTER 3 ITERATIONS				

C Cridworld Display				
0.37)	0.66)	0.83)	1.00	
• 0.00		• 0.51	-1.00	
•	0.00 ≯	• 0.31	∢ 0.00	
VALUES AFTER 4 ITERATIONS				

0.0	O O O Gridworld Display				
	0.51)	0.72 >	0.84)	1.00	
	0.27		0.55	-1.00	
	•	0.22)	• 0.37	∢ 0.13	
	VALUES AFTER 5 ITERATIONS				

000	Gridworl	d Display		
0.59) 0.73)	0.85)	1.00	
• 0.41		• 0.57	-1.00	
• 0.21	0.31 →	• 0.43	∢ 0.19	
VALUES AFTER 6 ITERATIONS				

O O O Gridworld Display			
0.62	▶ 0.74 ▶	0.85 →	1.00
• 0.50		• 0.57	-1.00
▲ 0.34	0.36)	• 0.45	∢ 0.24
VALU	JES AFTER	7 ITERA	TIONS

00	Gridworl	d Display		
0.63)	0.74 →	0.85)	1.00	
^		^		
0.53		0.57	-1.00	
^		^		
0.42	0.39)	0.46	∢ 0.26	
VALUES AFTER 8 ITERATIONS				

○ ○ ○ Gridworld Display				
0.64)	0.74)	0.85)	1.00	
• 0.55		• 0.57	-1.00	
0.46	0.40 →	• 0.47	• 0.27	
VALUES AFTER 9 ITERATIONS				

0.0	0	Gridworl	d Display		
	0.64)	0.74)	0.85)	1.00	
	A				
	0.56		0.57	-1.00	
	^		^		
	0.48	∢ 0.41	0.47	∢ 0.27	
	VALUES AFTER 10 ITERATIONS				

0 0	C C Gridworld Display			
	0.64)	0.74 →	0.85)	1.00
	^		•	
	0.56		0.57	-1.00
	•		•	
	0.48	∢ 0.42	0.47	∢ 0.27
	VALUES AFTER 11 ITERATIONS			

0.0	Gridworld Display					
	0.64)	0.74 →	0.85 →	1.00		
	A		^			
	0.57		0.57	-1.00		
	^		^			
	0.49	∢ 0.42	0.47	∢ 0.28		
VALUES AFTER 12 ITERATIONS						

O O Gridworld Display					
0.64)	0.74 →	0.85)	1.00		
• 0.57		• 0.57	-1.00		
▲ 0.49	♦ 0.43	▲ 0.48	∢ 0.28		
VALUES AFTER 100 ITERATIONS					

Value iteration: Recap

- Start out with every $V_0(s) = 0$
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to the Bellman equation:

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

- Assuming that we know the model of the world P(s'|s, a)
- What if we don't?

Q-learning: a sketch

- Idea: learn how to act without explicitly learning the transition probabilities P(s' | s, a)
- Q-learning: learn an action-utility function
 Q(s,a) that tells us the value of doing action
 a in state s
- Relationship between Q-values and utilities: $V^*(s) = \max_a Q(s, a)$
- With Q-values, you don't need the transition model to select the next action:

 $\pi^*(s) = \arg \max_a Q(s, a)$

Exploration vs. exploitation

Source: Berkeley CS188

Exploration vs. exploitation

Exploration: take an action with unknown consequences

- Pros:
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
- Cons:
 - When you're exploring, you're not maximizing your utility
 - Something bad might happen

Exploitation: go with the best strategy found so far

- Pros:
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
- Cons:
 - Might also prevent you from discovering the true optimal strategy

Summary

- Reinforcement learning task
- Markov decision process
- Value functions & Bellman equation
- Value iteration
- Optional: Q-learning idea