
Introduction to
Reinforcement Learning

Yin Li
yin.li@wisc.edu

University of Wisconsin, Madison

[Based on slides from Lana Lazebnik, Yingyu Liang, David Page, Mark Craven, Peter Abbeal, Daniel Klein]

Reinforcement Learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

Reinforcement Learning (RL)
Task of an agent embedded in an environment

repeat forever
1) sense world
2) reason
3) choose an action to perform
4) get feedback (usually reward = 0)
5) learn

the environment may be the physical world or an artificial one

RL: Example
• AlphaGo and AlphaZero

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/

RL: Example
• AI for video games

Video

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

https://youtu.be/cjpEIotvwFY
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

RL: Example
• AI for video games

O. Vinyals, I. Babuschkin, W.M. Czarnecki et al.
Grandmaster level in StarCraft II using multi-agent reinforcement learning. Nature 2019

https://www.nature.com/articles/s41586-019-1724-z

RL: Example
• End-to-end training of visuomotor policies

Video

S. Levine, C. Finn, T. Darrell and P. Abbeel.
End-to-End Training of Deep Visuomotor Policies. JMLR 2016

https://sites.google.com/site/visuomotorpolicy/
http://arxiv.org/abs/1504.00702

Reinforcement Learning (RL)
• Agent can take actions that affect the state of

the environment and observe occasional
rewards that depend on the state
• set of states S
• set of actions A
• at each time t, agent observes state st∈ S and

receives reward rt

• then chooses action at ∈ A and changes to state st+1

agent

environment

state reward action

Reinforcement Learning (RL)
• Agent can take actions that affect the state of

the environment and observe occasional
rewards that depend on the state

• The goal is to learn a mapping from states to
actions (policy) to maximize expected reward
over time

agent

environment

state reward action

Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

s0 s1 s2

a0 a1 a2

r0 r1 r2

Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in
any given state
• The “solution” to an MDP

Example MDP: Grid world
• Goal: find the best policy

Source: P. Abbeel and D. Klein

Example MDP: Grid world

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein

• With an unreliable robot

Example MDP: Grid world

𝑟𝑟(𝑠𝑠) = −0.04 for every
non-terminal state

Source: P. Abbeel and D. Klein

• Reach the target quickly

Example MDP: Grid world

r(s) = -0.04 for every
non-terminal state

Transition model:

Example MDP: Grid world

Optimal policy when
r(s) = -0.04 for every
non-terminal state

Example MDP: Grid world
• Optimal policies for various values of 𝑟𝑟(𝑠𝑠):

Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in
any given state
• The “solution” to an MDP

Formalism: Markov Decision Processes
• States 𝑆𝑆, beginning with initial state 𝑠𝑠0

• Actions 𝐴𝐴
• Transition model 𝑃𝑃 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡)

• Markov assumption: the probability of going to
𝑠𝑠𝑡𝑡+1 from 𝑠𝑠𝑡𝑡 depends only on 𝑠𝑠𝑡𝑡 and 𝑎𝑎𝑡𝑡 and not on
any other past actions or states

• Reward function 𝑟𝑟(𝑠𝑠𝑡𝑡)

• Policy π 𝑠𝑠 ∶ 𝑆𝑆 → 𝐴𝐴 the action that an agent takes in
any given state
• The “solution” to an MDP
• How to find the best policy?

Defining the optimal policy
• Given a policy π, we can define the expected

utility over all possible state sequences from
𝑠𝑠0 produced by following that policy:

• The value function of 𝑠𝑠0 w.r.t. policy 𝜋𝜋
• The optimal policy should maximize this utility

𝑉𝑉𝜋𝜋 𝑠𝑠0 = �

sequences
starting from 𝑠𝑠0

𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

Defining the optimal policy
• Given a policy π, we can define the expected

utility over all possible state sequences from
𝑠𝑠0 produced by following that policy:

• The value function of 𝑠𝑠0 w.r.t. policy 𝜋𝜋
• The optimal policy should maximize this utility
• How to define the utility of a state sequence?

• Sum of rewards of individual states
• Problem: infinite state sequences

𝑉𝑉𝜋𝜋 𝑠𝑠0 = �

sequences
starting from 𝑠𝑠0

𝑃𝑃 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑈𝑈(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

Discounted rewards
• To define the utility of a state sequence,

discount the individual state rewards by a
factor γ between 0 and 1:
𝑈𝑈 𝑠𝑠0, 𝑠𝑠1, … = 𝑟𝑟 𝑠𝑠0 + 𝛾𝛾 𝑟𝑟 𝑠𝑠1 + 𝛾𝛾2𝑟𝑟 𝑠𝑠2 + ⋯

= �
𝑡𝑡≥0

𝛾𝛾𝑡𝑡 𝑟𝑟 𝑠𝑠𝑡𝑡

Image source: P. Abbeel and D. Klein

Discounted rewards
• To define the utility of a state sequence,

discount the individual state rewards by a
factor γ between 0 and 1:
𝑈𝑈 𝑠𝑠0, 𝑠𝑠1, … = 𝑟𝑟 𝑠𝑠0 + 𝛾𝛾 𝑟𝑟 𝑠𝑠1 + 𝛾𝛾2𝑟𝑟 𝑠𝑠2 + ⋯

= �
𝑡𝑡≥0

𝛾𝛾𝑡𝑡 𝑟𝑟 𝑠𝑠𝑡𝑡 ≤
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

1 − 𝛾𝛾

• Sooner rewards count more than later rewards
• Makes sure the total utility stays bounded

• How to find the policy maximizing the value
function – the expected sum of discounted
rewards?

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• Define state utility 𝑉𝑉∗ 𝑠𝑠 as the expected
sum of discounted rewards if the agent
executes an optimal policy starting in state s

Image source: L. Lazbenik

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the expected utility of taking action a
in state s?

�
𝑠𝑠𝑠

𝑃𝑃(𝑠𝑠𝑠|𝑠𝑠,𝑎𝑎)𝑉𝑉∗ 𝑠𝑠′

Image source: L. Lazbenik

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• How do we choose the optimal action?

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Image source: L. Lazbenik

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the recursive expression for 𝑉𝑉∗ 𝑠𝑠 in
terms of 𝑉𝑉∗ 𝑠𝑠′ - the utilities of its successors?

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝜋𝜋∗(𝑠𝑠) 𝑉𝑉∗(𝑠𝑠′)

Image source: L. Lazbenik

The Bellman equation

Agent receives reward 𝑟𝑟(𝑠𝑠)

Agent chooses action 𝑎𝑎

Environment returns 𝑠𝑠′~ 𝑃𝑃(� |𝑠𝑠, 𝑎𝑎)

• What is the recursive expression for 𝑉𝑉∗ 𝑠𝑠 in
terms of 𝑉𝑉∗ 𝑠𝑠𝑠 - the utilities of its successors?

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Image source: L. Lazbenik

The Bellman equation

• Recursive relationship between optimal
values of successive states:

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Reward in
current state

Discounted expected future reward
assuming agent follows the optimal policy

Image source: L. Lazbenik

The Bellman equation
• Recursive relationship between optimal

values of successive states:

• The best policy to the MDP from 𝑠𝑠0 is given
by 𝑉𝑉∗ 𝑠𝑠

• The solution is

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

The Bellman equation
• Recursive relationship between optimal

values of successive states:

• The best policy to the MDP from 𝑠𝑠0 is given
by 𝑉𝑉∗ 𝑠𝑠

• The solution is

• If we know 𝑟𝑟 𝑠𝑠 and 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 , how can we
compute 𝑉𝑉∗ 𝑠𝑠 ?

𝑉𝑉∗ 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉∗(𝑠𝑠′)

Value iteration
• Start out with every V0 𝑠𝑠 = 0
• Iterate until convergence

• During the ith iteration, update the utility of each
state according to the equation:

• With infinitely many iterations, guaranteed to
find the correct utility values 𝑉𝑉∗ 𝑠𝑠
• Even if we randomly traverse environment instead

of looping through each state and action
• In practice, don’t need infinitely many iterations…

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)

Value iteration
What effect does the update have?

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)

r(s) = 0 for every non-
terminal state

Transition model:

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration demo

Noise = 0.2
Discount = 0.9
Living reward = 0

Value iteration: Recap
• Start out with every V0 𝑠𝑠 = 0
• Iterate until convergence

• During the ith iteration, update the utility of each
state according to the Bellman equation:

• Assuming that we know the model of the
world 𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎

• What if we don’t?

𝑉𝑉𝑖𝑖+1 𝑠𝑠 = 𝑟𝑟 𝑠𝑠 + 𝛾𝛾 max𝑎𝑎�
𝑠𝑠′
𝑃𝑃 𝑠𝑠′ 𝑠𝑠,𝑎𝑎 𝑉𝑉𝑖𝑖(𝑠𝑠′)

Q-learning: a sketch
• Idea: learn how to act without explicitly

learning the transition probabilities P(s’ | s, a)
• Q-learning: learn an action-utility function

Q(s,a) that tells us the value of doing action
a in state s

• Relationship between Q-values and utilities:

• With Q-values, you don’t need the transition
model to select the next action:

𝑉𝑉∗ 𝑠𝑠 = max𝑎𝑎𝑄𝑄 𝑠𝑠,𝑎𝑎

𝜋𝜋∗ 𝑠𝑠 = arg max𝑎𝑎𝑄𝑄 𝑠𝑠,𝑎𝑎

Exploration vs. exploitation

Source: Berkeley CS188

Exploration vs. exploitation
Exploration: take an action with unknown consequences

• Pros:
– Get a more accurate model of the environment
– Discover higher-reward states than the ones found so far

• Cons:
– When you’re exploring, you’re not maximizing your utility
– Something bad might happen

Exploitation: go with the best strategy found so far
• Pros:

– Maximize reward as reflected in the current utility estimates
– Avoid bad stuff

• Cons:
– Might also prevent you from discovering the true optimal

strategy

Summary
• Reinforcement learning task
• Markov decision process
• Value functions & Bellman equation
• Value iteration
• Optional: Q-learning idea

	Slide Number 1
	Reinforcement Learning (RL)
	Reinforcement Learning (RL)
	RL: Example
	RL: Example
	RL: Example
	RL: Example
	Reinforcement Learning (RL)
	Reinforcement Learning (RL)
	Formalism: Markov Decision Processes
	Formalism: Markov Decision Processes
	Example MDP: Grid world
	Example MDP: Grid world
	Example MDP: Grid world
	Example MDP: Grid world
	Example MDP: Grid world
	Example MDP: Grid world
	Formalism: Markov Decision Processes
	Formalism: Markov Decision Processes
	Defining the optimal policy
	Defining the optimal policy
	Discounted rewards
	Discounted rewards
	The Bellman equation
	The Bellman equation
	The Bellman equation
	The Bellman equation
	The Bellman equation
	The Bellman equation
	The Bellman equation
	The Bellman equation
	Value iteration
	Value iteration
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration demo
	Value iteration: Recap
	Q-learning: a sketch
	Exploration vs. exploitation
	Exploration vs. exploitation
	Summary

