For an MDP, the optimal policy is guaranteed to remain the same if we only change the reward function

- 1. True
- 2. False

For an MDP, the optimal policy is guaranteed to remain the same if we only change the reward function

- 1. True
- 2. False

Consider an MDP with 2 states A, B and 2 actions: "stay" stays at the current state and "move" moves to the other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let A be the start state and γ be the discounting factor.

Consider the "always move" policy π : $\pi(A) = \pi(B) =$ move and an infinite sequence of A, B, A, B, ... from this policy. What is the utility (i.e., the expected sum of discounted reward) of this sequence?

2.
$$1/(1 - \gamma)$$

3.
$$1/(1-\gamma^2)$$

Consider an MDP with 2 states A, B and 2 actions: "stay" stays at the current state and "move" moves to the other state. Let r be the reward function such that r(A) = 1, r(B) = 0. Let A be the start state and γ be the discounting factor.

Consider the "always move" policy π : $\pi(A) = \pi(B) =$ move and an infinite sequence of A, B, A, B, ... from this policy. What is the utility (i.e., the expected sum of discounted reward) of this sequence?

2.
$$1/(1-\gamma)$$

3. $1/(1-\gamma^2)$

4. 1

Sequence: A, B, A, B, A, B, Discounted rewards: 1, 0, γ^2 , 0, γ^4 , 0, γ^6 , ... Sum of discounted rewards: $1 + \gamma^2 + \gamma^4 + \gamma^6 + \cdots = 1/(1 - \gamma^2)$ In the above MDP, what is the optimal policy π^* ? Assume A as the start state.

- 1. $\pi(A) = \pi(B) = move$
- 2. $\pi(A) = \pi(B) = stay$
- 3. $\pi(A) = stay, \pi(B) = move$
- 4. $\pi(A) = move, \pi(B) = stay$

In the above MDP, what is the optimal policy π^* ? Assume A as the start state.

- 1. $\pi(A) = \pi(B) = move$
- 2. $\pi(A) = \pi(B) = stay$
- 3. $\pi(A) = stay, \pi(B) = move$
- 4. $\pi(A) = move, \pi(B) = stay$

Value iteration is guaranteed to converge if the discount factor (γ) satisfies $0 < \gamma < 1$.

- 1. True
- 2. False

Value iteration is guaranteed to converge if the discount factor (γ) satisfies $0 < \gamma < 1$.

- 1. True
- 2. False