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Consider an MDP with 2 states A, B and 2 actions: “stay” stays at the 
current state and “move” moves to the other state. Let r be the reward 
function such that r(A) = 1, r(B) = 0. Let A be the start state and 𝛾𝛾 be the 
discounting factor. 

Consider the “always move” policy π: π(A) = π(B) = move and an infinite 
sequence of A, B, A, B, … from this policy. What is the utility (i.e., the 
expected sum of discounted reward) of this sequence?

1. 0
2. 1 / (1 - 𝛾𝛾)
3. 1 / (1 - 𝛾𝛾2)
4. 1
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Sequence: A, B, A, B, A, B, ….
Discounted rewards: 1, 0, 𝛾𝛾2, 0, 𝛾𝛾4, 0, 𝛾𝛾6, …
Sum of discounted rewards: 1 + 𝛾𝛾2 + 𝛾𝛾4 + 𝛾𝛾6 + ⋯ =
1/(1 − 𝛾𝛾2)



In the above MDP, what is the optimal policy π*? Assume A as the start 
state.

1. π(A) = π(B) = move
2. π(A) = π(B) = stay
3. π(A) = stay, π(B) = move
4. π(A) = move, π(B) = stay
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Value iteration is guaranteed to converge if the discount factor (𝛾𝛾) satisfies 
0 < 𝛾𝛾 < 1.
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