Consider a comparison between a sigmoid function and a rectified linear unit (ReLU). Which of following statement is NOT true?

- Sigmoid function is more expansive to compute
- ReLU has non-zero gradient everywhere
- Sigmoid has a large zone that has zero gradient
- It is possible to compute the "gradient" of ReLU

Consider a comparison between a sigmoid function and a rectified linear unit (ReLU). Which of following statement is NOT true?

- Sigmoid function is more expansive to compute
- ReLU has non-zero gradient everywhere
- Sigmoid has a large zone that has zero gradient
- It is possible to compute the "gradient" of ReLU

A Leaky ReLU is defined as f(x)=max(0.1x, x). Does it have non-zero gradient everywhere?

• Yes

• No

A Leaky ReLU is defined as f(x)=max(0.1x, x). Does it have non-zero gradient everywhere?

What is the output value of the given convolution operation at the current step?

	w ₂	w ₁	w ₀
	1	0	1
	u ₁	u ₂	u ₃
1	2	3	4

What is the output value of the given convolution operation at the current step?

What is the output value of the given convolution operation at the **next** step?

What is the output value of the given convolution operation at the next step?

w ₂	w ₁	w ₀
1	0	1

	u ₁	u ₂	u ₃
1	2	3	4

Given an input 1D array of size 7, a convolutional kernel of size 3 with stride 1. If we don't allow the kernel to partly fall outside of the input, what is the output size?

- 5
 4
 7
- 6

Given an input 1D array of size 7, a convolutional kernel of size 3 with stride 1. If we don't allow the kernel to partly fall outside of the input, what is the output size?

5
4
7
6

Given an input 1D array of size 7, a convolutional kernel of size 3 with stride **2**. If we don't allow the kernel to partly fall outside of the input, what is the output size?

- 6
 5
 4
 3
- XYZabc

Given an input 1D array of size 7, a convolutional kernel of size 3 with stride 2. If we don't allow the kernel to partly fall outside of the input, what is the output size?

- 6
 5
 4
 3
- XYZabc

Valid Output size: (N - F) // stride + 1

e.g. N = 7, F = 3:
stride 1 =>
$$(7 - 3)/(1 + 1 = 5)$$

stride 2 => $(7 - 3)/(2 + 1 = 3)$
stride 3 => $(7 - 3)/(3 + 1 = 2)$

Let us compare a convolutional layer vs. a standard fully connected layer. Which of the following is TRUE?

- Convolution layer has more parameters
- Fully connected layer can be used to represent the convolution
- Convolution layer can be used to represent fully connected layer
- Fully connected layer is more efficient

Let us compare a convolutional layer vs. a standard fully connected layer. Which of the following is TRUE?

- Convolution layer has more parameters
- Fully connected layer can be used to represent the convolution
- Convolution layer can be used to represent fully connected layer
- Fully connected layer is more efficient

а

b

С

d

е

