Q1. Consider a small dataset with four points, where each point is in 2D, and y is their classification label. Can we classify this dataset perfectly using a single nonlinear perceptron?

| x1 | x2 | У |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 1 |
| 1  | 0  | 1 |
| 1  | 1  | 0 |

a) Yes

b) No

Q1. Consider a small dataset with four points, where each point is in 2D, and y is their classification label. Can we classify this dataset perfectly using a single nonlinear perceptron?

| x1 | x2 | У |
|----|----|---|
| 0  | 0  | 0 |
| 0  | 1  | 1 |
| 1  | 0  | 1 |
| 1  | 1  | 0 |

a) Yes

b) No 🔶

## Solution:

XOR is not linearly separable, so we cannot use a single neuron (perceptron) to classify this problem.

Q1. Consider a three-layer network with **linear Perceptrons** for binary classification. The hidden layer has 3 neurons. Can the network represent a XOR problem?

a) Yes b) No Q1. Consider a three-layer network with **linear Perceptrons** for binary classification. The hidden layer has 3 neurons. Can the network represent a XOR problem?

a) Yes b) No

Solution: A combination of linear Perceptrons is still a linear function.



Q5. Gradient descent in neural networks computes the \_\_\_\_\_ of a loss function w.r.t. the model \_\_\_\_\_\_ until convergence.

- a) gradients, parameters
- b) parameter, gradients
- c) loss, parameters
- d) parameters, loss

Q5. Gradient descent in neural networks computes the \_\_\_\_\_ of a loss function w.r.t. the model \_\_\_\_\_\_ until convergence.

- a) gradients, parameters 🖛
- b) parameter, gradients
- c) loss, parameters
- d) parameters, loss