
Q1-1: Which is true about the two approaches to compute
the value on the initial node of a game tree?
1. The DFS implementation

of minimax search has
better time complexity
than the bottom up
approach

2. The DFS implementation
of minimax search has
better space complexity
than the bottom up
approach

3. Both 1 and 2
4. None of the above

Q1-1: Which is true about the two approaches to compute
the value on the initial node of a game tree?
1. The DFS implementation

of minimax search has
better time complexity
than the bottom up
approach

2. The DFS implementation
of minimax search has
better space complexity
than the bottom up
approach

3. Both 1 and 2
4. None of the above

Q1-2: Which is true about the DFS implementation of minimax
search? Suppose it evaluates the children from left to right.

1. It will visit the leaves in the
subtree of a left child
before visiting a right child

2. It will finish computing the
value of a left child before
visiting a right child

3. Both 1 and 2
4. None of the above

Q1-2: Which is true about the DFS implementation of minimax
search? Suppose it evaluates the children from left to right.

1. It will visit the leaves in the
subtree of a left child
before visiting a right child

2. It will finish computing the
value of a left child before
visiting a right child

3. Both 1 and 2
4. None of the above

Q1-3: Suppose the minimax search evaluates the children from
left to right. It has computed the value of E and returned to D but
hasn’t visited F. Up to now, the best value Max can make sure is
X (no matter what subtree of F looks like, Max has a way to get a
score >=X). Where can X be obtained?
1. X can be the value of A or E
2. X can be the value of C
3. X can be the value of B or D
4. Both 1 and 2

S

A B

E F

max

min

max

min

DC

Q1-3: Suppose the minimax search evaluates the children from
left to right. It has computed the value of E and returned to D but
hasn’t visited F. Up to now, the best value Max can make sure is
X (no matter what subtree of F looks like, Max has a way to get a
score >=X). Where can X be obtained?
1. X can be the value of A or E
2. X can be the value of C
3. X can be the value of B or D
4. Both 1 and 2

S

A B

E F

max

min

max

min

DC

If A’s value is larger than C and E, then Max
can choose to go to A. If the values are
C>E>A, Max can choose to go to B and
guarantees at least E’s value. If E>C>A,
then Max will go to B and min will go to C,
so X is obtained on C. The value of B or D
has not been computed yet.

Q1-3: Suppose the minimax search evaluates the children from
left to right. It has computed the value of E and returned to D but
hasn’t visited F. Up to now, the best value Max can make sure is
X (no matter what subtree of F looks like, Max has a way to get a
score >=X). Where can X be obtained?
1. X can be the value of A or E
2. X can be the value of C
3. X can be the value of B or D
4. Both 1 and 2

S

A B

E F

max

min

max

min

DC

Example: If A’s value is larger than C
and E, then Max can choose to go to
A.

100

0

0

Q1-3: Suppose the minimax search evaluates the children from
left to right. It has computed the value of E and returned to D but
hasn’t visited F. Up to now, the best value Max can make sure is
X (no matter what subtree of F looks like, Max has a way to get a
score >=X). Where can X be obtained?
1. X can be the value of A or E
2. X can be the value of C
3. X can be the value of B or D
4. Both 1 and 2

S

A B

E F

max

min

max

min

DC

Example: If the values are C>E>A,
Max can choose to go to B and
guarantees at least E’s value.

0

200

100

Q1-3: Suppose the minimax search evaluates the children from
left to right. It has computed the value of E and returned to D but
hasn’t visited F. Up to now, the best value Max can make sure is
X (no matter what subtree of F looks like, Max has a way to get a
score >=X). Where can X be obtained?
1. X can be the value of A or E
2. X can be the value of C
3. X can be the value of B or D
4. Both 1 and 2

S

A B

E F

max

min

max

min

DC

Example: If E>C>A, then Max will go
to B and min will go to C, so X is
obtained on C.

0

50

100

Q2-1: Under which of the circumstance can the alpha on a max
node or the beta value on a min node be determined (i.e., not
infinity)?

A. all leaves under that node
must have been evaluated

B. all subtree under that node
must have been evaluated

C. at least a leave under that
node have been evaluated

D. at least a subtree under
that node have been
evaluated

Q2-1: Under which of the circumstance can the alpha on a max
node or the beta value on a min node be determined (i.e., not
infinity)?

A. all leaves under that node
must have been evaluated

B. all subtree under that node
must have been evaluated

C. at least a leave under that
node have been evaluated

D. at least a subtree under
that node have been
evaluated

Q2-2: In which of the following situations, we can prune some
subtree? (multiple correct answers)

A. On a max node, its alpha is
larger than its parent’s beta

B. On a min node, its beta goes
below its parent’s alpha

C. On a max node, its alpha is
larger than its parent’s alpha

D. On a min node, its beta goes
below its parent’s beta

Q2-2: In which of the following situations, we can prune some
subtree? (multiple correct answers)

A. On a max node, its alpha is
larger than its parent’s beta

B. On a min node, its beta goes
below its parent’s alpha

C. On a max node, its alpha is
larger than its parent’s alpha

D. On a min node, its beta goes
below its parent’s beta

Q2-3: When on a node v, which of the following is correct
regarding the alpha value on that node?

A. Alpha is the maximum value
over all the leaves we’ve
seen so far

B. Alpha is the maximum value
over all the evaluated
children of the nodes from
root to v (regardless of max
nodes or min nodes)

C. Alpha is the maximum value
over all the evaluated
children of the max nodes
from root to v

D. Alpha is the maximum value
over all the evaluated
children of the min nodes
from root to v

Q2-3: When on a node v, which of the following is correct
regarding the alpha value on that node?

A. Alpha is the maximum value
over all the leaves we’ve
seen so far

B. Alpha is the maximum value
over all the evaluated
children of the nodes from
root to v (regardless of max
nodes or min nodes)

C. Alpha is the maximum value
over all the evaluated
children of the max nodes
from root to v

D. Alpha is the maximum value
over all the evaluated
children of the min nodes
from root to v

Alpha is inherited from the parent,
and only get updated on max nodes
using their children’s values. The
updates can only increase the value.

Q2-3: When on a node v, which of the following is correct
regarding the alpha value on that node?

A. Alpha is the maximum value
over all the leaves we’ve
seen so far

B. Alpha is the maximum value
over all the evaluated
children of the nodes from
root to v (regardless of max
nodes or min nodes)

C. Alpha is the maximum value
over all the evaluated
children of the max nodes
from root to v

D. Alpha is the maximum value
over all the evaluated
children of the min nodes
from root to v

This example shows why B and D are
wrong: consider C. It also shows why
A is wrong: consider when C is a leaf.

S

A B

E F

max

min

max

min

DC

0

200

100

Alpha= 100

Alpha= 0

Alpha= 0

Q2-3: When on a node v, which of the following is correct
regarding the alpha value on that node?

A. Alpha is the maximum value
over all the leaves we’ve
seen so far

B. Alpha is the maximum value
over all the evaluated
children of the nodes from
root to v (regardless of max
nodes or min nodes)

C. Alpha is the maximum value
over all the evaluated
children of the max nodes
from root to v

D. Alpha is the maximum value
over all the evaluated
children of the min nodes
from root to v

Consider another example. At this point, alpha
is still the max value on the max nodes A and E.
But alpha is not the best value Max can make
sure, since at this point alpha>beta on D so Min
won’t choose to go to D.

S

A B

E F

max

min

max

min

DC

0

50

100

Alpha= 100
Beta=50

Alpha= 0
Beta=50

Alpha= 0
Beta=-inf

Q3-1: We have beta=9, alpha=3 on the current node C after
checking L but not R. Suppose after checking R and returning to
the parent node P, the alpha on P is not updated. Which value of
the node R guarantees that this happens?
A. 2
B. 4
C. 6
D. 8

L R

P

C

α=x1

α=3
β=9

L R

P

C

α=x1

Q3-1: We have beta=9, alpha=3 on the current node C after
checking L but not R. Suppose after checking R and returning to
the parent node P, the alpha on P is not updated. Which value of
the node R guarantees that this happens?
A. 2
B. 4
C. 6
D. 8

L R

P

C

α=x1

α=3
β=9

L R

P

C

α=x1

Think about the execution of alpha-beta pruning.
1. If the current node is a max node where alpha is updated. Then

P is a min node and only updates its beta value.
2. If the current node is a min node where beta is updated. Then x1

must be 3. Also, beta on C is updated to 2, and we return 3 to the
parent P.

Q3-2: We have enough computation resource to evaluate a tree
with depth m without pruning. In the worst case, what is the
depth of the tree we can evaluate with alpha-beta pruning?

A. 2m
B. m
C. m^2
D. ln(m)

Q3-2: We have enough computation resource to evaluate a tree
with depth m without pruning. In the worst case, what is the
depth of the tree we can evaluate with alpha-beta pruning?

A. 2m
B. m
C. m^2
D. ln(m)

Q3-3: We have enough computation resource to evaluate a tree
with depth m without pruning. In the best case, what is the depth
of the tree we can evaluate with alpha-beta pruning?

A. 2m
B. m
C. m^2
D. ln(m)

Q3-3: We have enough computation resource to evaluate a tree
with depth m without pruning. In the best case, what is the depth
of the tree we can evaluate with alpha-beta pruning?

A. 2m
B. m
C. m^2
D. ln(m)

	Q1-1: Which is true about the two approaches to compute the value on the initial node of a game tree?
	Q1-1: Which is true about the two approaches to compute the value on the initial node of a game tree?
	Q1-2: Which is true about the DFS implementation of minimax search? Suppose it evaluates the children from left to right.
	Q1-2: Which is true about the DFS implementation of minimax search? Suppose it evaluates the children from left to right.
	Q1-3: Suppose the minimax search evaluates the children from left to right. It has computed the value of E and returned to D but hasn’t visited F. Up to now, the best value Max can make sure is X (no matter what subtree of F looks like, Max has a way to get a score >=X). Where can X be obtained?
	Q1-3: Suppose the minimax search evaluates the children from left to right. It has computed the value of E and returned to D but hasn’t visited F. Up to now, the best value Max can make sure is X (no matter what subtree of F looks like, Max has a way to get a score >=X). Where can X be obtained?
	Q1-3: Suppose the minimax search evaluates the children from left to right. It has computed the value of E and returned to D but hasn’t visited F. Up to now, the best value Max can make sure is X (no matter what subtree of F looks like, Max has a way to get a score >=X). Where can X be obtained?
	Q1-3: Suppose the minimax search evaluates the children from left to right. It has computed the value of E and returned to D but hasn’t visited F. Up to now, the best value Max can make sure is X (no matter what subtree of F looks like, Max has a way to get a score >=X). Where can X be obtained?
	Q1-3: Suppose the minimax search evaluates the children from left to right. It has computed the value of E and returned to D but hasn’t visited F. Up to now, the best value Max can make sure is X (no matter what subtree of F looks like, Max has a way to get a score >=X). Where can X be obtained?
	Q2-1: Under which of the circumstance can the alpha on a max node or the beta value on a min node be determined (i.e., not infinity)?�
	Q2-1: Under which of the circumstance can the alpha on a max node or the beta value on a min node be determined (i.e., not infinity)?�
	Q2-2: In which of the following situations, we can prune some subtree? (multiple correct answers)�
	Q2-2: In which of the following situations, we can prune some subtree? (multiple correct answers)�
	Q2-3: When on a node v, which of the following is correct regarding the alpha value on that node?�
	Q2-3: When on a node v, which of the following is correct regarding the alpha value on that node?�
	Q2-3: When on a node v, which of the following is correct regarding the alpha value on that node?�
	Q2-3: When on a node v, which of the following is correct regarding the alpha value on that node?�
	Q3-1: We have beta=9, alpha=3 on the current node C after checking L but not R. Suppose after checking R and returning to the parent node P, the alpha on P is not updated. Which value of the node R guarantees that this happens?
	Q3-1: We have beta=9, alpha=3 on the current node C after checking L but not R. Suppose after checking R and returning to the parent node P, the alpha on P is not updated. Which value of the node R guarantees that this happens?
	Q3-2: We have enough computation resource to evaluate a tree with depth m without pruning. In the worst case, what is the depth of the tree we can evaluate with alpha-beta pruning?�
	Q3-2: We have enough computation resource to evaluate a tree with depth m without pruning. In the worst case, what is the depth of the tree we can evaluate with alpha-beta pruning?�
	Q3-3: We have enough computation resource to evaluate a tree with depth m without pruning. In the best case, what is the depth of the tree we can evaluate with alpha-beta pruning?�
	Q3-3: We have enough computation resource to evaluate a tree with depth m without pruning. In the best case, what is the depth of the tree we can evaluate with alpha-beta pruning?�

