A Short Introduction to Propositional Logic and First-Order Logic

Daifeng Wang
daifeng.wang@wisc.edu
University of Wisconsin, Madison

Based on slides from Louis Oliphant and Andrew Moore, and Xiaojin Zhu (http://pages.cs.wisc.edu/~jerryzhu/cs540.html), modified by Daifeng Wang

Logic

- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Sentences:
- Describe facts about the world
- Related but not identical to the "sentences" in a language
- Simple sentences such as " 5 is odd", " 6 is even"
- Complex sentences connect simple sentences by a logic relationship

Logic

- Several types of logic:
- propositional logic (Boolean logic)
- first order logic (first order predicate calculus)
- A logic includes:
- syntax: what is a correctly formed sentence
- semantics: what is the meaning of a sentence
- Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

```
Sentence }->\mathrm{ AtomicSentence | ComplexSentence
AtomicSentence }->\mathrm{ True |False | Symbol
Propositional Symbol }->\textrm{P}|\textrm{Q}|\textrm{R}|..
ComplexSentence }->\neg\neg\mathrm{ Sentence
|
| Sentence \vee Sentence ) v
(Sentence }=>\mathrm{ Sentence ) =>
(Sentence }\Leftrightarrow\mathrm{ Sentence ) <=>
BNF (Backus-Naur Form) grammar in propositional logic
```

$((\neg P \vee(($ True $\wedge R) \Leftrightarrow Q)) \Rightarrow S \quad$ well formed
$(\neg(P \vee Q) \wedge \Rightarrow S) \quad$ not well formed

Propositional logic syntax

Propositional logic syntax

- Precedence (from highest to lowest):

$$
\neg, \wedge, \vee, \Rightarrow, \Leftrightarrow
$$

- If the order is clear, you can leave off parenthesis.

$$
\begin{aligned}
& -P \vee \text { True } \wedge R \Leftrightarrow Q \Rightarrow S \text { ok } \\
& P \Rightarrow Q \Rightarrow S \quad \text { not ok }
\end{aligned}
$$

Semantics

- An interpretation is a complete True / False assignment to propositional symbols
- Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
- There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True.
- Example: the semantics of the sentence $P \vee Q$ is the set of 6 interpretations
- $P=$ True, $\mathrm{Q}=$ True, $\mathrm{R}=$ True or False
- $P=$ True, $Q=F a l s e, R=$ True or False
- $P=$ False, $Q=$ True, $R=$ True or False
- A model of a set of sentences is an interpretation in which all the sentences are true.

Evaluating a sentence under an interpretation

- Calculated using the meaning of connectives, recursively.

P	Q	$\neg P$	$P \wedge Q$	$P \vee Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Pay attention to \Rightarrow
- " 5 is even implies 6 is odd" is True!
- If P is False, regardless of $Q, P \Rightarrow Q$ is True
- No causality needed: " 5 is odd implies the Sun is a star" is True.

Semantics example

$$
\neg P \vee Q \wedge R \Rightarrow Q
$$

Semantics example

$$
\neg P \vee Q \wedge R \Rightarrow Q
$$

P	Q	R	$\sim \mathrm{P}$	$\mathrm{Q}^{\wedge} \mathrm{R}$	$\sim \mathrm{PvQ}^{\wedge} \mathrm{R}$	$\sim \mathrm{PvQ}^{\wedge} \mathrm{R}->\mathrm{Q}$
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

Satisfiable: the sentence is true under some interpretations
Deciding satisfiability of a sentence is NP-complete

Semantics example

$$
(P \wedge R \Rightarrow Q) \wedge P \wedge R \wedge \neg Q
$$

Semantics example

$$
(P \wedge R \Rightarrow Q) \wedge P \wedge R \wedge \neg Q
$$

P	Q	R	$\sim \mathrm{Q}$	$\mathrm{R}^{\wedge} \sim \mathrm{Q}$	$\mathrm{P}^{\wedge} \mathrm{R}^{\wedge} \sim \mathrm{Q}$	$\mathrm{P}^{\wedge} \mathrm{R}$	$\mathrm{P}^{\wedge} \mathrm{R}->\mathrm{Q}$	final
0	0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0
1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	1	0
1	1	1	0	0	0	1	1	0

Unsatisfiable: the sentence is false under all interpretations.

Semantics example

$$
(P \Rightarrow Q) \vee P \wedge \neg Q
$$

Semantics example

$$
(P \Rightarrow Q) \vee P \wedge \neg Q
$$

P	Q	R	$\sim \mathrm{Q}$	$\mathrm{P}->\mathrm{Q}$	$\mathrm{P}^{\wedge} \sim \mathrm{Q}$	$(\mathrm{P}->\mathrm{Q}) \mathrm{v} \mathrm{P}^{\wedge} \sim \mathrm{Q}$
0	0	0	1	1	0	1
0	0	1	1	1	0	1
0	1	0	0	1	0	1
0	1	1	0	1	0	1
1	0	0	1	0	1	1
1	0	1	1	0	1	1
1	1	0	0	1	0	1
1	1	1	0	1	0	1

Tautology: the sentence is true under all interpretations

Knowledge Base (KB)

- A knowledge Base KB is a set of sentences. Example KB:
- TomGivingLecture \Leftrightarrow (TodaylsTuesday \vee TodaylsThursday)
- \neg TomGivingLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
- (TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodaylsThursday)) $\wedge \neg$ TomGivingLecture
- The model of a KB is the interpretations in which all sentences in the KB are true.

Entailment

- Entailment is the relation of a sentence β logically follows from other sentences α (i.e. the KB).

$$
\alpha \mid=\beta
$$

- $\alpha \mid=\beta$ if and only if, in every interpretation in which α is true, β is also true

Inference

- An inference algorithm is a procedure for deriving a sentence β from the KB α
- Whether a query sentence β is entailed by α ?
- $\alpha \mid-\beta$ means that β is derived from $\mathrm{KB} \alpha$ using the inference algorithm
- The inference algorithm is sound if it derives only sentences that are entailed by $\mathrm{KB} \alpha$
- If $\alpha \mid-\beta$ then $\alpha \mid=\beta$
- The inference algorithm is complete if it can derive any sentence that is entailed by $\mathrm{KB} \alpha$
- If $\alpha \mid=\beta$ then $\alpha \mid-\beta$

Inference method 1: truth table enumeration

We can enumerate all interpretations and check this.
This is called model checking or truth table enumeration. Equivalently...

- Deduction theorem: $\alpha \mid=\beta$ if and only if $\alpha \Rightarrow \beta$ is valid (always true)
- Proof by contradiction (refutation, reductio ad absurdum): $\alpha \mid=\beta$ if and only if $\alpha \wedge \neg \beta$ is unsatisfiable
- There are 2^{n} interpretations to check, if the KB has n symbols
- very slow and takes exponential time
- Can we do more efficiently?

Inference method 2: Sound inference rules

- Modus Ponens (Latin: mode that affirms)

$$
\alpha \Rightarrow \beta, \alpha
$$

Given any sentence of $\alpha \Rightarrow \beta$ and α , then β can be inferred

- And-elimination

- All the logical equivalences (next slide)

Logical equivalences

$$
\begin{aligned}
(\alpha \wedge \beta) & \equiv(\beta \wedge \alpha) \quad \text { commutativity of } \wedge \\
(\alpha \vee \beta) & \equiv(\beta \vee \alpha) \quad \text { commutativity of } \vee \\
((\alpha \wedge \beta) \wedge \gamma) & \equiv(\alpha \wedge(\beta \wedge \gamma)) \quad \text { associativity of } \wedge \\
((\alpha \vee \beta) \vee \gamma) & \equiv(\alpha \vee(\beta \vee \gamma)) \quad \text { associativity of } \vee \\
\neg(\neg \alpha) & \equiv \alpha \text { double-negation elimination } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \beta \Rightarrow \neg \alpha) \quad \text { contraposition } \\
(\alpha \Rightarrow \beta) & \equiv(\neg \alpha \vee \beta) \quad \text { implication elimination } \\
(\alpha \Leftrightarrow \beta) & \equiv((\alpha \Rightarrow \beta) \wedge(\beta \Rightarrow \alpha)) \quad \text { biconditional elimination } \\
\neg(\alpha \wedge \beta) & \equiv(\neg \alpha \vee \neg \beta) \quad \text { de Morgan } \\
\neg(\alpha \vee \beta) & \equiv(\neg \alpha \wedge \neg \beta) \quad \text { de Morgan } \\
(\alpha \wedge(\beta \vee \gamma)) & \equiv((\alpha \wedge \beta) \vee(\alpha \wedge \gamma)) \quad \text { distributivity of } \wedge \text { over } \vee \\
(\alpha \vee(\beta \wedge \gamma)) & \equiv((\alpha \vee \beta) \wedge(\alpha \vee \gamma)) \quad \text { distributivity of } \vee \text { over } \wedge
\end{aligned}
$$

You can use these equivalences to modify sentences.

Proof

- Series of inference steps that leads from α (or KB) to β
- This is exactly a search problem

KB:

1. TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodayIsThursday)
2. \neg TomGivingLecture
β :
\neg TodayIsTuesday

Proof

KB:

1. TomGivingLecture \Leftrightarrow (TodayIsTuesday \vee TodayIsThursday)
2. \neg TomGivingLecture
3. TomGivingLecture \Rightarrow (TodayIsTuesday \vee TodayIsThursday) \wedge (TodayIsTuesday \vee TodayIsThursday) \Rightarrow TomGivingLecture biconditional-elimination to 1 .
4. (TodayIsTuesday \vee TodayIsThursday) \Rightarrow TomGivingLecture and-elimination to 3 .
5. \neg TomGivingLecture $\Rightarrow \neg$ (TodayIsTuesday \vee

TodayIsThursday) contraposition to 4.
6. \neg (TodayIsTuesday \vee TodayIsThursday) Modus Ponens 2,5.
7. \neg TodayIsTuesday $\wedge \neg$ TodayIsThursday de Morgan to 6 .
8. \neg TodayIsTuesday and-elimination to 7 .

Inference method 3: Resolution

- Your algorithm can use all the logical equivalences, Modus Ponens, and-elimination to derive new sentences.
- Resolution: a single inference rule
- Sound: only derives entailed sentences
- Complete: can derive any entailed sentence
- Resolution is only refutation complete: if $\mathrm{KB} \mid=\beta$, then $K B \wedge \neg \beta \mid$ - empty. It cannot derive empty $\mid-(P \vee \neg P)$
- But the sentences need to be preprocessed into a special form
- But all sentences can be converted into this form

Conjunctive Normal Form (CNF)

$$
(\underbrace{(\neg \mathrm{A} \vee \mathrm{~B} \vee \mathrm{C})}_{\text {a clause }} \wedge(\neg \mathrm{B} \vee \mathrm{~A}) \wedge(\neg \mathrm{C} \vee \mathrm{~A})
$$

- A conjunction of one or more clauses, where a clause is a disjunction of literals
- A literal is atomic sentence or negation of atomic sentence (e.g., A or $\neg A$)
- How to convert a sentence to CNF?
- Replace all \Leftrightarrow using biconditional elimination
- Replace all \Rightarrow using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of \vee over \wedge

Convert example sentence into CNF

$A \Leftrightarrow(B \vee C)$
starting sentence
$(A \Rightarrow(B \vee C)) \wedge((B \vee C) \Rightarrow A)$ biconditional elimination
$(\neg A \vee B \vee C) \wedge(\neg(B \vee C) \vee A) \quad$ implication elimination
$(\neg A \vee B \vee C) \wedge((\neg B \wedge \neg C) \vee A)$ move negations inward
$(\neg A \vee B \vee C) \wedge(\neg B \vee A) \wedge(\neg C \vee A)$ distribute \vee over \wedge

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB , show this leads to empty (False. Proof by contradiction): Proof $\mathrm{KB} \wedge \neg \beta \mid$ - empty
- Everything needs to be in CNF
- Example KB:
- $A \Leftrightarrow(B \vee C)$
- ᄀA
- Example query: $\neg \mathrm{B}$

Resolution preprocessing

- $\operatorname{Add} \neg \beta$ to KB , convert to CNF:
a1: $(\neg A \vee B \vee C)$
a2: $(\neg B \vee A)$
a3: $(\neg C \vee A)$
b: $\neg A$
c: B
- Want to reach goal: empty

Resolution

- Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$
P \vee Q \vee R \quad \quad \neg Q \vee S \vee T
$$

- Merge (resolve) them, throw away the symbol and its complement

$$
P \vee R \vee S \vee T
$$

- If two clauses resolve and there's no symbol left, you have reached empty (False). KB |= β
- If no new clauses can be added, KB does not entail β

Resolution example

$$
\begin{aligned}
& \text { a1: }(\neg A \vee B \vee C) \\
& \text { a2: }(\neg B \vee A) \\
& \text { a3: }(\neg C \vee A) \\
& \text { b: } \neg A \\
& \text { c: } B
\end{aligned}
$$

Step 1: resolve a2, c: A

Step 2: resolve above and b: empty

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
- Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

$$
P \vee R \vee P \vee T \rightarrow P \vee R \vee T
$$

- If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

```
a1: \((\neg A \vee B \vee C)\)
a2: \((\neg B \vee A)\)
\(\rightarrow\) Resolve a1 and \(\mathrm{a} 2: \mathrm{B} \vee \mathrm{C} \vee \neg \mathrm{B}\) (valid, throw away)
```


First Order Logic (FOL)

- Propositional logic assumes that the world contains facts
- Describe facts by sentences
- First Order Logic (FOL) assumes that the world has
- Objects: animals, people, colors, matters, etc.
- Relationships: larger than, part of, between, etc.
- Functions: mother of, two more than, plus, etc.

First Order Logic syntax

- Term: an object in the world
- Constant: Jerry, 2, Madison, Green, ...
- Variables: $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b}, \mathrm{c}, \ldots$
- Function(term $1, \ldots$, term $_{n}$)
- Sqrt(9), Distance(Madison, Chicago)
- Maps one or more objects to another object
- Can refer to an unnamed object: LeftLeg(John)
- Represents a user defined functional relation
- A ground term is a term without variables.

"True/False" in FOL

- Atom: smallest True/False expression
- Predicate(term ${ }_{1}, \ldots$, term ${ }_{n}$)
- Teacher(Jerry, you), Bigger(sqrt(2), x)
- Convention: read "Jerry (is)Teacher(of) you"
- Maps one or more objects to a truth value
- Represents a user defined relation
- term $_{1}=$ term $_{2}$
- Radius(Earth)=6400km, 1=2
- Represents the equality relation when two terms refer to the same object

FOL syntax

- Sentence: True/False expression
- Atom
- Complex sentence using connectives: $\wedge \vee \neg \Rightarrow \Leftrightarrow$
- Spouse(Jerry, Jing) \Rightarrow Spouse(Jing, Jerry)
- Less $(11,22)$ ^ Less $(22,33)$
- Complex sentence using quantifiers \forall, \exists
- Sentences are evaluated under an interpretation
- Which objects are referred to by constant symbols
- Which objects are referred to by function symbols
- What subsets defines the predicates

FOL quantifiers

- Universal quantifier: \forall
- Sentence is true for all values of x in the domain of variable x. Main connective typically is \Rightarrow
- Forms if-then rules
- "all humans are mammals"

$$
\forall x \text { human }(x) \Rightarrow \operatorname{mammal}(x)
$$

- Means if x is a human, then x is a mammal
- Existential quantifier: \exists
- Sentence is true for some value of x in the domain of variable x. Main connective typically is \wedge
- "some humans are male"

$$
\exists x \text { human }(x) \wedge \operatorname{male}(x)
$$

- Means there is an x who is a human and is a male

