A Short Introduction to Propositional Logic and First-Order Logic

Daifeng Wang

daifeng.wang@wisc.edu University of Wisconsin, Madison

Based on slides from Louis Oliphant and Andrew Moore, and Xiaojin Zhu (<u>http://pages.cs.wisc.edu/~jerryzhu/cs540.html</u>), modified by Daifeng Wang

Logic

- If the rules of the world are presented formally, then a decision maker can use logical reasoning to make rational decisions.
- Sentences:
 - Describe facts about the world
 - Related but not identical to the "sentences" in a language
 - Simple sentences such as "5 is odd", "6 is even"
 - Complex sentences connect simple sentences by a logic relationship

Logic

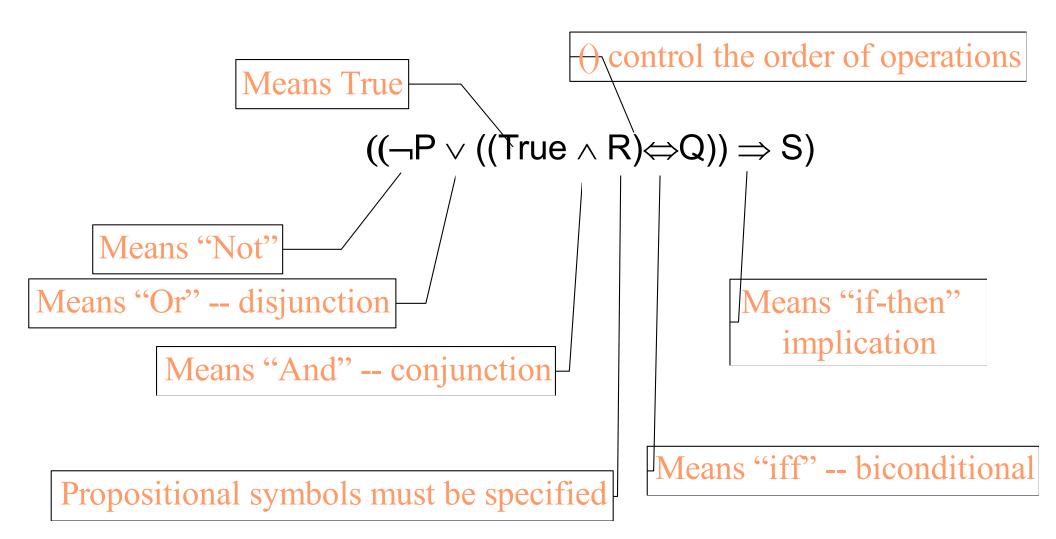
- Several types of logic:
 - propositional logic (Boolean logic)
 - first order logic (first order predicate calculus)
- A logic includes:
 - syntax: what is a correctly formed sentence
 - semantics: what is the meaning of a sentence
 - Inference procedure (reasoning, entailment): what sentence logically follows given knowledge

Propositional logic syntax

Sentence \rightarrow AtomicSentence Cor	nplexSentence
$AtomicSentence \rightarrow True False Symbol$	
$Propositional Symbol \rightarrow \mathbf{P} \mathbf{Q} \mathbf{R} \dots$	Connectives:
$ComplexSentence \rightarrow \neg Sentence$	_
Sentence Sentence Sentence	^
<i>(Sentence V Sentence)</i>	V
$(Sentence \Rightarrow Sentence)$	=>
$(Sentence \Leftrightarrow Sentence)$	<=>
BNF (Backus-Naur Form) grammar in propositional logic	

$$\begin{array}{ll} ((\neg P \lor ((True \land R) \Leftrightarrow Q)) \Rightarrow S & \text{well formed} \\ (\neg (P \lor Q) \land \Rightarrow S) & \text{not well formed} \end{array}$$

Propositional logic syntax



Propositional logic syntax

Precedence (from highest to lowest):

 $eg, \land, \lor, \Rightarrow, \Leftrightarrow$

• If the order is clear, you can leave off parenthesis.

$$\neg P \lor True \land R \Leftrightarrow Q \Rightarrow S \quad ok$$
$$P \Rightarrow Q \Rightarrow S \quad not ok$$

Semantics

- An interpretation is a complete True / False assignment to propositional symbols
 - Example symbols: P means "It is hot", Q means "It is humid", R means "It is raining"
 - There are 8 interpretations (TTT, ..., FFF)
- The semantics (meaning) of a sentence is the set of interpretations in which the sentence evaluates to True.
- Example: the semantics of the sentence PvQ is the set of 6 interpretations
 - P=True, Q=True, R=True or False
 - P=True, Q=False, R=True or False
 - P=False, Q=True, R=True or False
- A model of a set of sentences is an interpretation in which all the sentences are true.

Evaluating a sentence under an interpretation

Calculated using the meaning of connectives, recursively.

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Pay attention to \Rightarrow
 - "5 is even implies 6 is odd" is True!
 - If P is False, regardless of Q, P⇒Q is True
 - No causality needed: "5 is odd implies the Sun is a star" is True.

 $\neg P \lor Q \land R \Longrightarrow Q$

 $\neg P \lor Q \land R \Longrightarrow Q$

Q	R	~P	Q^R	~PvQ^R	~PvQ^R->Q
0	0	1	0	1	0
0	1	1	0	1	0
1	0	1	0	1	1
1	1	1	1	1	1
0	0	0	0	0	1
0	1	0	0	0	1
1	0	0	0	0	1
1	1	0	1	1	1
	1 0 0 1	$\begin{array}{ccc} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \\ \end{array}$	$\begin{array}{c ccccc} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Satisfiable: the sentence is true under some interpretations

Deciding satisfiability of a sentence is NP-complete

 $(P \land R \Longrightarrow Q) \land P \land R \land \neg Q$

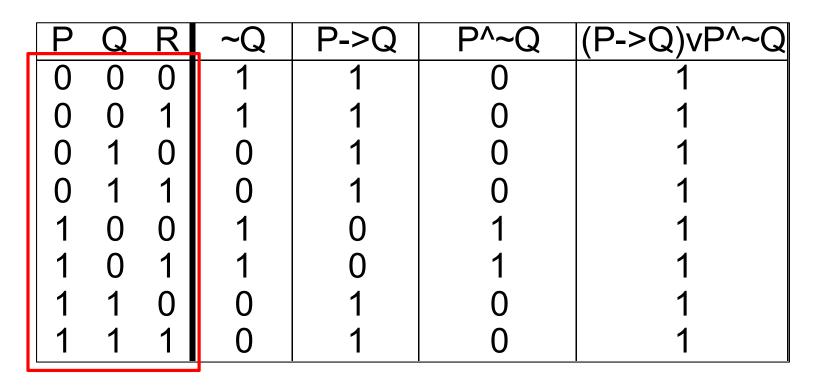
$(P \land R \Rightarrow Q) \land P \land R \land \neg Q$

Ρ	Q	R	~Q	R^~Q	P^R^~Q	P^R	P^R->Q	final
0	0	0	1	0	0	0	1	0
0	0	1	1	1	0	0	1	0
0	1	0	0	0	0	0	1	0
0	1	1	0	0	0	0	1	0
1	0	0	1	0	0	0	1	0
1	0	1	1	1	1	1	0	0
1	1	0	0	0	0	0	1	0
1	1	1	0	0	0	1	1	0

Unsatisfiable: the sentence is false under all interpretations.

 $(\mathsf{P} \Longrightarrow \mathsf{Q}) \lor \ \mathsf{P} \land \neg \mathsf{Q}$

 $(\mathsf{P} \Longrightarrow \mathsf{Q}) \lor \ \mathsf{P} \land \neg \mathsf{Q}$



Tautology: the sentence is true under all interpretations

Knowledge Base (KB)

- A knowledge Base KB is a set of sentences. Example KB:
 - TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
 - TomGivingLecture
- It is equivalent to a single long sentence: the conjunction of all sentences
 - (TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)) ∧ ¬ TomGivingLecture
- The model of a KB is the interpretations in which all sentences in the KB are true.

Entailment

• Entailment is the relation of a sentence β logically follows from other sentences α (i.e. the KB).

α |= β if and only if, in every interpretation in which α is true, β is also true

All interp	oretations
	β is true
	α is true

Inference

- An inference algorithm is a procedure for deriving a sentence β from the KB α
 - Whether a query sentence β is entailed by α ?
- $\alpha \mid -\beta$ means that β is derived from KB α using the inference algorithm
- The inference algorithm is sound if it derives only sentences that are entailed by KB α

• If $\alpha \mid -\beta$ then $\alpha \mid =\beta$

• The inference algorithm is *complete* if it can derive any sentence that is entailed by KB α

• If $\alpha \models \beta$ then $\alpha \models \beta$

Inference method 1: truth table enumeration

We can enumerate all interpretations and check this. This is called model checking or truth table enumeration. Equivalently...

- Deduction theorem: α |= β if and only if α ⇒ β is valid (always true)
- Proof by contradiction (refutation, *reductio ad absurdum*): $\alpha \models \beta$ if and only if $\alpha \land \neg \beta$ is unsatisfiable
- There are 2ⁿ interpretations to check, if the KB has n symbols
 - very slow and takes exponential time
 - Can we do more efficiently?

Inference method 2: Sound inference rules

Modus Ponens (Latin: mode that affirms)

$$\alpha \Rightarrow \beta, \alpha$$
$$\beta$$

Given any sentence of $\alpha \Rightarrow \beta$ and α , then β can be inferred

And-elimination

$$\frac{\alpha \wedge \beta}{\alpha}$$

All the logical equivalences (next slide)

Logical equivalences

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

You can use these equivalences to modify sentences.

Proof

- Series of inference steps that leads from α (or KB) to β
- This is exactly a search problem

KB:

- 1. TomGivingLecture \Leftrightarrow (TodayIsTuesday \lor TodayIsThursday)
- 2. TomGivingLecture

β: – TodayIsTuesday

Proof

KB:

TomGivingLecture ⇔ (TodayIsTuesday ∨ TodayIsThursday)
 TomGivingLecture

3. TomGivingLecture \Rightarrow (TodayIsTuesday \lor TodayIsThursday) \land (TodayIsTuesday \lor TodayIsThursday) \Rightarrow TomGivingLecture biconditional-elimination to 1.

4. (TodayIsTuesday \lor TodayIsThursday) \Rightarrow TomGivingLecture and-elimination to 3.

5. \neg TomGivingLecture $\Rightarrow \neg$ (TodayIsTuesday \lor TodayIsThursday) contraposition to 4.

6. \neg (TodayIsTuesday \lor TodayIsThursday) Modus Ponens 2,5.

7. \neg TodayIsTuesday $\land \neg$ TodayIsThursday de Morgan to 6.

8. \neg TodayIsTuesday and-elimination to 7.

Inference method 3: Resolution

- Your algorithm can use all the logical equivalences, Modus Ponens, and-elimination to derive new sentences.
- Resolution: a single inference rule
 - Sound: only derives entailed sentences
 - Complete: can derive any entailed sentence
 - Resolution is only refutation complete: if KB |= β, then KB ∧ ¬β |- empty. It cannot derive empty |- (P ∨ ¬P)
 - But the sentences need to be preprocessed into a special form
 - But all sentences can be converted into this form

Conjunctive Normal Form (CNF)

$$(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$$

- A conjunction of one or more clauses, where a clause is a disjunction of literals
 - A literal is atomic sentence or negation of atomic sentence (e.g., A or ¬A)
- How to convert a sentence to CNF?
 - − Replace all ⇔ using biconditional elimination
 - Replace all \Rightarrow using implication elimination
 - Move all negations inward using
 -double-negation elimination
 -de Morgan's rule
 - Apply distributivity of \lor over \land

Convert example sentence into CNF $A \Leftrightarrow (B \lor C)$ starting sentence $(A \Rightarrow (B \lor C)) \land ((B \lor C) \Rightarrow A)$ biconditional elimination $(\neg A \lor B \lor C) \land (\neg (B \lor C) \lor A)$ implication elimination $(\neg A \lor B \lor C) \land ((\neg B \land \neg C) \lor A)$ move negations inward $(\neg A \lor B \lor C) \land (\neg B \lor A) \land (\neg C \lor A)$ distribute \lor over \land

Resolution steps

- Given KB and β (query)
- Add $\neg \beta$ to KB, show this leads to empty (False. Proof by contradiction): Proof KB $\land \neg \beta$ |- *empty*
- Everything needs to be in CNF
- Example KB:
 - A ⇔ (B ∨ C)
 - ¬A
- Example query: ¬B

Resolution preprocessing

- Add ¬ β to KB, convert to CNF:
 a1: (¬A ∨ B ∨ C)
 a2: (¬B ∨ A)
 a3: (¬C ∨ A)
 b: ¬A
 c: B
- Want to reach goal: *empty*

Resolution

 Take any two clauses where one contains some symbol, and the other contains its complement (negative)

$$P \lor Q \lor R$$
 $\neg Q \lor S \lor T$

 Merge (resolve) them, throw away the symbol and its complement

$P \lor R \lor S \lor T$

- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB $|= \beta$
- If no new clauses can be added, KB does not entail β

Resolution example

```
a1: (\neg A \lor B \lor C)
a2: (\neg B \lor A)
a3: (\neg C \lor A)
b: \neg A
c: B
```

Step 1: resolve a2, c: A

Step 2: resolve above and b: *empty*

Efficiency of the resolution algorithm

- Run time can be exponential in the worst case
 - Often much faster
- Factoring: if a new clause contains duplicates of the same symbol, delete the duplicates

 $\mathsf{P}_{\vee}\mathsf{R}_{\vee}\mathsf{P}_{\vee}\mathsf{T} \twoheadrightarrow \mathsf{P}_{\vee}\mathsf{R}_{\vee}\mathsf{T}$

 If a clause contains a symbol and its complement, the clause is a tautology and useless, it can be thrown away

a1:
$$(\neg A \lor B \lor C)$$

a2: $(\neg B \lor A)$

→ Resolve a1 and a2: $B \lor C \lor \neg B$ (valid, throw away)

First Order Logic (FOL)

- Propositional logic assumes that the world contains facts
 - Describe facts by sentences
- First Order Logic (FOL) assumes that the world has
 - Objects: animals, people, colors, matters, etc.
 - Relationships: larger than, part of, between, etc.
 - Functions: mother of, two more than, plus, etc.

First Order Logic syntax

- **Term**: an object in the world
 - **Constant**: Jerry, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, …
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A **ground term** is a term without variables.

"True/False" in FOL

- **Atom**: smallest True/False expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL syntax

- **Sentence**: True/False expression
 - Atom
 - Complex sentence using connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Spouse(Jerry, Jing) ⇒ Spouse(Jing, Jerry)
 - Less(11,22) ^ Less(22,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL quantifiers

- Universal quantifier: ∀
- Sentence is true for all values of x in the domain of variable x. Main connective typically is ⇒
 - Forms if-then rules
 - "all humans are mammals"

 $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$

- Means if x is a human, then x is a mammal
- Existential quantifier: 3
- Sentence is true for some value of x in the domain of variable x. Main connective typically is
 - "some humans are male"

 $\exists x human(x) \land male(x)$

Means there is an x who is a human and is a male