Linear Algebra

1.1 Suppose x is a column vector. Is the equation $\|x\|_{2}^{2}=x^{\mathrm{T}} x$ correct?
A. Yes
B. No

Answer: A

Linear Algebra

1.2 Which following statements are correct?
(1) For any square matrix $X, X I=I X=X$
(2) For any square matrix $X, X X^{T} v-\lambda v=\left(X X^{T}-\lambda I\right) v$
(3) If u_{i} is an eigenvector of square matrix A, then $A u_{i}=u_{i}$
A. (1)
B. (2)
C. (3)
D. (1)(2)
E. (1)(3)
F. (2)(3)
G. (1)(2)(3)

Answer: D. The eigenvalue is missing in option 3.

PCA Math

2.1 If v is a unit column vector, which one is correct:
A. $v^{T} v=1$
B. $\|v\|_{2}=1$
C. both are correct

Answer: C

PCA Math

2.2 If $v_{1}, v_{2}, \ldots, v_{d}$ are principal components, which is correct:
A. $v_{1}^{T} v_{2}=0$
B. $v_{2}^{T} v_{d}=0$
C. $v_{1}^{T} v_{1}=1$
D. the above options are all correct

Answer: D

PCA Dimension Reduction

3.1 Suppose we have a data matrix $X \in R^{n \times p}$ where n is the number of data points and p is the number of features. After applying PCA, we keep the first k eigenvectors with largest eigenvalues and project the data. What is the dimension of the projected data?
A. $n \times k$
B. $n \times p$
C. $k \times p$

Answer: A. After applying PCA, the data feature is reduced from p-dimension to k-dimension since we keep k principal components.

PCA Dimension Reduction

3.2 Consider the same setting as last question. We apply PCA on the data $X \in R^{n \times p}$ and keep the first k principal components with largest eigenvalues. What is the dimension of each principal component?
A. n
B. p
C. k

Answer: B. Each principal component has the same dimension as the feature of original data.

