Linear Algebra

1.1 Suppose x is a column vector. Is the equation $||x||_2^2 = x^T x$ correct?

A. Yes

B.No

Answer: A

Linear Algebra

1.2 Which following statements are correct?

(1) For any square matrix X, XI = IX = X

(2) For any square matrix X, $XX^T v - \lambda v = (XX^T - \lambda I)v$

(3) If u_i is an eigenvector of square matrix A, then $Au_i = u_i$

A.(1)

B.(2)

C.(3)

D.(1)(2)

E.(1)(3)

F.(2)(3)

G.(1)(2)(3)

Answer: D. The eigenvalue is missing in option 3.

PCA Math

2.1 If v is a unit column vector, which one is correct :

A. $v^T v = 1$

 $\mathbf{B}.\|v\|_2 = 1$

C. both are correct

Answer: C

PCA Math

2.2 If $v_1, v_2, ..., v_d$ are principal components, which is correct :

A. $v_1^T v_2 = 0$

B. $v_2^T v_d = 0$

 $C.v_1^Tv_1=1$

D. the above options are all correct

Answer: D

PCA Dimension Reduction

3.1 Suppose we have a data matrix $X \in R^{n \times p}$ where *n* is the number of data points and *p* is the number of features. After applying PCA, we keep the first *k* eigenvectors with largest eigenvalues and project the data. What is the dimension of the projected data? A. $n \times k$

 $B.n \times p$

 $C.k \times p$

Answer: A. After applying PCA, the data feature is reduced from p-dimension to k-dimension since we keep k principal components.

PCA Dimension Reduction

3.2 Consider the same setting as last question. We apply PCA on the data $X \in \mathbb{R}^{n \times p}$ and keep the first *k* principal components with largest eigenvalues. What is the dimension of each principal component?

A.*n*

B. *p*

 $\mathbf{C}.k$

Answer: B. Each principal component has the same dimension as the feature of original data.