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Outline

• Basic review on linear algebra
• Introduction to dimensionality reduction
• Principal component analysis: 

formulation and computation
• Applications
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REVIEW ON 
LINEAR ALGEBRA
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Vector
• Not a physics vector (magnitude, direction)
• Column of numbers e.g. intensity of same voxel at 

different time points

Linear Algebra & Matrices, MfD 2009
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Matrices
• Rectangular display of vectors in rows and columns
• Can inform about the same vector intensity at 

different times or different voxels at the same 
time

• Vector is just a n x 1 matrix
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Defined as rows x columns (R x C)
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Matrices in Python
• X=[[1,2,3],[4,5,6],[7,8,9]] 
• Index from 0 to nrow/ncol-1
• :=all row or column
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Subscripting – each element of a matrix can be addressed with a pair of numbers; 
[row first. column second]

e.g.         X[1, 2] = 6

X[2, :] =

X[1:2, 1] =

( )987
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Transposition
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Scalar multiplication
• Scalar x matrix = scalar multiplication

Linear Algebra & Matrices, MfD 2009
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Matrix Calculations
Addition 

– Commutative: A+B=B+A
– Associative:  (A+B)+C=A+(B+C)

Subtraction
- By adding a negative matrix

Linear Algebra & Matrices, MfD 2009
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Matrix Multiplication
“When A is a mxn matrix & B is a kxl

matrix, AB is only possible if n=k. The 
result will be an mxl matrix”

A1 A2 A3
A4 A5 A6
A7 A8 A9
A10 A11 A12

m

n

x

B13 B14
B15 B16
B17 B18

l

k

Number of columns in A = Number of rows in B

= m x l matrix

Linear Algebra & Matrices, MfD 2009
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Matrix multiplication
• Multiplication method:
Sum over product of respective rows and columns
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Matrix multiplication
• Matrix multiplication is NOT 

commutative
• AB≠BA
• Matrix multiplication IS associative
• A(BC)=(AB)C
• Matrix multiplication IS distributive
• A(B+C)=AB+AC
• (A+B)C=AC+BC

Linear Algebra & Matrices, MfD 2009
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Identity matrix
Is there a matrix which plays a similar role as the number 1 in 

number multiplication? 
Consider the nxn matrix:

For any nxn matrix A, we have  A In = In A = A
For any nxm matrix A, we have In A = A, and  A Im = A (so 2 possible matrices)

Linear Algebra & Matrices, MfD 2009
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Matrix inverse
• Definition. A matrix A is called nonsingular or invertible if

there exists a matrix B such that:

• Notation. A common notation for the 
inverse of a matrix A is A-1. So:

• The inverse matrix is unique when it exists. So if A is invertible, then 
A-1 is also invertible and then (AT)-1 = (A-1)T

1 1 X 2 
3

-1
3 = 2 + 1

3    3
-1 + 1
3    3 = 1 0

-1 2 1 
3

1 
3

-2+ 2
3    3

1 + 2
3    3 0 1

Linear Algebra & Matrices, MfD 2009
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SciPy - Linear Algebra
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INTRODUCTION TO 
DIMENSIONALITY 
REDUCTION
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• High-Dimensions = Lot of Features

Document classification
Features per document = 

thousands of words/unigrams
millions of bigrams,  contextual 
information

Surveys - Netflix
480189 users x 17770 movies

Big & High-Dimensional Data
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• Useful to learn lower dimensional 
representations of the data.
• Given data points in D dimensions
• Convert them to data points in 

d<D dimensions
• With minimal loss of information

• Big & High-Dimensional Data.
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Data Compression

Reduce data from 
2D to 1D

(in
ch

es
)

(cm)

Andrew Ng

(x1=cm, x2=inch) -> z1



Data Compression
Reduce data from 3D to 2D

Andrew Ng



PRINCIPAL COMPONENT 
ANALYSIS (PCA)
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Principal Component Analysis (PCA)

In case where data  lies on or near a low d-dimensional linear 
subspace, axes of this subspace are an effective representation 
of the data.

Identifying the axes is known as Principal Components Analysis, and 
can be obtained by using classic matrix computation tools (Eigen or 
Singular Value Decomposition).
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• Reduce from 2-dimension to 1-dimension: Find a direction 
(a red vector 𝑣! ∈ 𝑅") onto which to project the data so as to minimize 
the projection error.

• Reduce from D-dimension to d-dimension: Find d vectors 𝑣# ∈ 𝑅" , 𝑖 =
1,2, . . , 𝑑 onto which to project the data, so as to minimize the 
projection error.

• 𝑣# is called a principal component (PC) Andrew Ng

PCA formulation



Principal Component Analysis
Input: N data points (D-dim vectors) 

Output: 
• d principal components (PCs)

• For each xi, it’s project coordinates on {𝑣!}:
𝑤",! = 𝑣!$ ∗ x", 𝑗 = 1,2,… , 𝑑

• Now xi, a D-dim vector can be represented by a 
d-dim vector (d<D)

[𝑤",%, 𝑤",&, … ,𝑤",']

𝑣# ∈ 𝑅(, 𝑗 = 1,2, . . , 𝑑

s.t., Euclidean norm ||𝑣#||) = (∑$%&( 𝑣#) 𝑘 )
!
" = 1
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PCA, Kernel PCA, ICA, CCA: Powerful unsupervised learning 
techniques for extracting hidden (potentially lower 
dimensional) structure from high dimensional datasets.

Learning Representations

Useful for:
• Visualization 

• Further processing by machine learning algorithms

• More efficient use of resources 
(e.g., time, memory, communication)

• Statistical: fewer dimensions à better generalization

• Noise removal (improving data quality)
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PCA COMPUTATION
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1s
t PC

Principal Component Analysis (PCA)
Principal Components (PC) are orthogonal directions 
that capture most of the variance in the data.

x( v

vT ⋅ x(

• Projection of data points along first PC 
discriminates data most along any one direction 
(pts are the most spread out when we project the data on 
that direction compared to any other directions).

||v||=1, Point x$ (D-dimensional vector)

Projection of x$ onto v is  vT ⋅ x$

• First PC – direction of greatest variability in data.

Quick reminder:
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Principal Component Analysis (PCA)

1s
t PC

2 ndPC

Principal Components (PC) are orthogonal directions 
that capture most of the variance in the data.

x" − vT ⋅ x" vx(

vT ⋅ x(

• 1st PC – direction of greatest variability in data.

• 2nd PC – Next orthogonal (uncorrelated) direction 
of greatest variability

(remove all variability in first direction, then find next direction of 
greatest variability)

• And so on … 28



Eigenvector and Eigenvalue
Ax = λx

A: Square Matrix
x: Eigenvector
λ : Eigenvalue

Example

• The zero vector can not be an eigenvector
• The value zero can be eigenvalue 29



Principal Component Analysis (PCA)
Let v!, v%, …, v& denote the d principal components.

Wrap constraints into the 
objective function

v𝑇$ ⋅ v' = 0, i ≠ j

Find vector that maximizes sample variance of projected data

and v𝑇$ ⋅ v$ = 1, i = j

Let X = [x! , x% , … , x(] (columns are the datapoints)

Assume data is centered (we extracted the sample mean).
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Principal Component Analysis (PCA)
X X# v = λv , so v (the first PC) is the eigenvector 

of sample correlation/covariance matrix 𝑋 𝑋$

Sample variance of projection v$𝑋 𝑋$v = 𝜆v$v = 𝜆

Thus, the eigenvalue 𝜆 denotes the amount of 
variability captured along that dimension (aka amount of 
energy along that dimension).

Eigenvalues 𝜆! ≥ 𝜆% ≥ 𝜆) ≥ ⋯

• The 1st PC 𝑣! is the eigenvector of the sample covariance matrix 
𝑋 𝑋* associated with the largest eigenvalue 

• The 2nd PC 𝑣% is the eigenvector of the sample covariance 
matrix 𝑋 𝑋* associated with the second largest eigenvalue 

• And so on … 31



Two Interpretations
So far: Maximum Variance Subspace. PCA finds vectors v such that 
projections on to the  vectors capture maximum variance in the data

Alternative viewpoint: Minimum Reconstruction Error. PCA 
finds vectors v such that projection on to the vectors yields 
minimum mean squared error (MSE) reconstruction 

x( v

vT ⋅ x(
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Dimensionality Reduction using PCA
In high-dimensional problems, data sometimes lies near a linear 
subspace, as noise introduces small variability

Only keep data projections onto principal components with large
eigenvalues 
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Can ignore the components of smaller significance. 

Might lose some info, but if eigenvalues are small, do not lose much
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APPLICATION EXAMPLES
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