Principal Component Analysis

Daifeng Wang
daifeng.wang@wisc.edu
University of Wisconsin, Madison

Based on slides from Xiaojin Zhu, Yingyu Liang and UCL Linear Algebra \& Matrices, MfD 2009, modified by Daifeng Wang

Outline

- Basic review on linear algebra
- Introduction to dimensionality reduction
- Principal component analysis: formulation and computation
- Applications

REVIEW ON LINEAR ALGEBRA

Vector

- Not a physics vector (magnitude, direction)
- Column of numbers e.g. intensity of same voxel at different time points

Matrices

- Rectangular display of vectors in rows and columns
- Can inform about the same vector intensity at different times or different voxels at the same time
- Vector is just a $n \times 1$ matrix

$$
\begin{aligned}
& \mathbf{A}=\left[\begin{array}{lll}
1 & 2 & 3 \\
5 & 4 & 1 \\
6 & 7 & 4
\end{array}\right] \\
& \mathbf{C}=\left[\begin{array}{ll}
1 & 4 \\
2 & 7 \\
3 & 8
\end{array}\right] \\
& \mathbf{D}=\left[\begin{array}{lll}
d_{11} & d_{12} & d_{13} \\
d_{21} & d_{22} & d_{23} \\
d_{31} & d_{32} & d_{33}
\end{array}\right] \\
& \text { Square (3 } \mathrm{x} 3 \text {) Rectangular (} 3 \times 2 \text {) } \quad \mathrm{d}_{\mathrm{ij}}: \mathrm{i}^{\text {th }} \text { row, } \mathrm{j}^{\text {th }} \text { column } \\
& \text { Defined as rows } \mathrm{x} \text { columns (} \mathrm{R} \times \mathrm{C} \text {) }
\end{aligned}
$$

Matrices in Python
 - $\mathrm{X}=[[1,2,3],[4,5,6],[7,8,9]]$
 - Index from 0 to nrow/ncol-1
 - :=all row or column

Subscripting - each element of a matrix can be addressed with a pair of numbers; [row first. column second]

$$
\begin{array}{ll}
\text { e.g. } & X[1,2]=6 \\
& X[2,:]=\left(\begin{array}{lll}
7 & 8 & 9
\end{array}\right) \\
& X[1: 2,1]=\binom{5}{8}
\end{array}
$$

Transposition

$$
\mathbf{b}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \mathbf{b}^{T}=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] \quad \mathbf{d}=\left[\begin{array}{lll}
3 & 4 & 9
\end{array}\right] \quad \mathbf{d}^{T}=\left[\begin{array}{l}
3 \\
4 \\
9
\end{array}\right]
$$

column

$$
\mathbf{A}=\left[\begin{array}{|ccc}
1 & 2 & 3 \\
5 & 4 & 1 \\
6 & 7 & 4
\end{array}\right] \quad \mathbf{A}^{T}=\left[\begin{array}{lll}
1 & 5 & 6 \\
2 & 4 & 7 \\
3 & 1 & 4
\end{array}\right]
$$

Linear Algebra \& Matrices, MfD 2009

Scalar multiplication

- Scalar \times matrix = scalar multiplication

$$
\lambda\left(\begin{array}{lll}
a & b & c \\
d & e & f
\end{array}\right)=\left(\begin{array}{lll}
\lambda a & \lambda b & \lambda c \\
\lambda d & \lambda e & \lambda f
\end{array}\right)
$$

Matrix Calculations

Addition

- Commutative: $A+B=B+A$
- Associative: $(A+B)+C=A+(B+C)$

$$
\mathbf{A}+\mathbf{B}=\left[\begin{array}{ll}
2 & 4 \\
2 & 5
\end{array}\right]+\left[\begin{array}{ll}
1 & 0 \\
3 & 1
\end{array}\right]=\left[\begin{array}{ll}
2+1 & 4+0 \\
2+3 & 5+1
\end{array}\right]=\left[\begin{array}{ll}
3 & 4 \\
5 & 6
\end{array}\right]
$$

Subtraction

- By adding a negative matrix

$$
\mathbf{A}-\mathbf{B}=\left[\begin{array}{ll}
2 & 4 \\
5 & 3
\end{array}\right]-\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
5 & 3
\end{array}\right]+\left[\begin{array}{ll}
-1 & -2 \\
-3 & -4
\end{array}\right]=\left[\begin{array}{cc}
1 & 2 \\
2 & -1
\end{array}\right]
$$

Linear Algebra \& Matrices, MfD 2009

Matrix Multiplication

"When A is a mxn matrix \& B is a $k x /$ matrix, $A B$ is only possible if $n=k$. The result will be an mxl matrix"

Number of columns in $A=$ Number of rows in B

Matrix multiplication

- Multiplication method:

Sum over product of respective rows and columns

$$
\left.\left.\begin{array}{rl}
\left(\begin{array}{ll}
1 & 0 \\
2 & 3
\end{array}\right) \times\left(\begin{array}{l}
2 \\
3 \\
\mathbf{A}
\end{array}\right) & =\left(\begin{array}{ll}
\mathbf{c}_{11} & \mathbf{c}_{12} \\
\mathbf{c}_{21} & \mathbf{c}_{22}
\end{array}\right)
\end{array} \begin{array}{c}
\text { Define output } \\
\text { matrix }
\end{array}\right] \begin{array}{lll}
(1 \times 2)+(0 \times 3) & (1 \times 1)+(0 \times 1) \\
(2 \times 2)+(3 \times 3) & (2 \times 1)+(3 \times 1)
\end{array}\right] .
$$

Matrix multiplication

- Matrix multiplication is NOT commutative
- $A B \neq B A$
- Matrix multiplication IS associative
- $A(B C)=(A B) C$
- Matrix multiplication IS distributive
- $A(B+C)=A B+A C$
- $(A+B) C=A C+B C$

Identity matrix

Is there a matrix which plays a similar role as the number 1 in number multiplication?
Consider the $n \times n$ matrix:

For any nxm matrix \boldsymbol{A}, we have $\boldsymbol{I}_{n} \boldsymbol{A}=\boldsymbol{A}$, and $\boldsymbol{A} \boldsymbol{I}_{m}=\boldsymbol{A}$ (so 2 possible matrices)

Matrix inverse

- Definition. A matrix A is called nonsingular or invertible if there exists a matrix B such that:

$$
A B=B A=I_{n} \quad\left[\begin{array}{cc}
1 & 1 \\
-1 & 2
\end{array}\right] \times\left[\begin{array}{cc}
\frac{2}{3} & \frac{-1}{3} \\
\frac{1}{3} & \frac{1}{3}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2}{3}+\frac{1}{3} & \frac{-1}{3}+\frac{1}{3} \\
\frac{-2}{3} \frac{2}{3} & \frac{1}{3}+\frac{2}{3}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Notation. A common notation for the inverse of a matrix \boldsymbol{A} is \boldsymbol{A}^{-1}. So:

$$
A A^{-1}=A^{-1} A=I_{n}
$$

- The inverse matrix is unique when it exists. So if \boldsymbol{A} is invertible, then \boldsymbol{A}^{-1} is also invertible and then $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

SciPy - Linear Algebra

SciPy - Linear Algebra Learn More Python for Data Science Interactively at www.datacamp.com	
SciPy	
The SciPy library is one of the core packages for scientific computing that provides mathematical algorithms and convenience functions built on the NumPy extension of Python.	
Interacting With Num	Aso seeromm
Index Tricks	
	Create a dense meshgrid Create an open meshgrid Stack arrays vertically (row-wise) Create stacked column-wise arrays
Shape Manipulation	
	Permute array dimensions Flatten the array Stack arrays horizontally (column-wise) Stack arrays vertically (row-wise) Split the array horizontally at the 2nd index Split the array vertically at the 2nd index
Polynomials	
$\begin{aligned} & \text { य> from numpy import poly10 } \\ & \ggg>p^{201 y 1 d}([3,4,5]) \end{aligned}$	1d ${ }^{\text {1d }}$ Create a polynomial object
Vectorizing Functions	
	Vectorize functions
Type Handling	
	Return the real part of the array elements Return the imaginary part of the array elements Return a real array if complex parts close to 0 Cast object to a data type
Other Useful Functions	
	Return the angle of the complex argument Create an array of evenly spaced values (number of samples) Unwrap Create an array of evenly spaced values (log scale) Return values from a list of arrays depending on conditions Factorial Combine N things taken at k time Weights for Np-point central derivative Find the n-th derivative of a function at a point

INTRODUCTION TO DIMENSIONALITY REDUCTION

Big \& High-Dimensional Data

- High-Dimensions $=$ Lot of Features

Document classification
Features per document = thousands of words/unigrams millions of bigrams, contextual information

Surveys - Netflix
480189 users $\times 17770$ movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	$?$	$?$	1	3	$?$
George	$?$	$?$	3	1	2	5
Susan	4	3	1	$?$	5	1
Beth	4	3	$?$	2	4	2

- Big \& High-Dimensional Data.
- Useful to learn lower dimensional representations of the data.
- Given data points in D dimensions
- Convert them to data points in $\mathrm{d}<\mathrm{D}$ dimensions
- With minimal loss of information

Data Compression

Reduce data from 2D to 1D
($x_{1}=c m, x_{2}=$ inch $) \rightarrow z_{1}$
$x^{(1)}$
$\rightarrow z^{(1)}$
$x^{(2)}$
$\rightarrow z^{(2)}$
$x^{(m)}$
$\rightarrow z^{(m)}$

Andrew Ng

Data Compression Reduce data from 3D to 2D

PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA)

In case where data lies on or near a low d-dimensional linear subspace, axes of this subspace are an effective representation of the data.

Identifying the axes is known as Principal Components Analysis, and can be obtained by using classic matrix computation tools (Eigen or Singular Value Decomposition).

PCA formulation

- Reduce from 2-dimension to 1-dimension: Find a direction (a red vector $v_{1} \in R^{D}$) onto which to project the data so as to minimize the projection error.
- Reduce from D-dimension to d-dimension: Find d vectors $v_{i} \in R^{D}, i=$ $1,2, . . d$ onto which to project the data, so as to minimize the projection error.
- v_{i} is called a principal component (PC)

Principal Component Analysis

Input: N data points (D-dim vectors)

$$
\mathbf{x} \in \mathbb{R}^{D}: \mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}
$$

Output:

- d principal components (PCs)

$$
v_{j} \in R^{D}, j=1,2, \ldots, d
$$

s.t., Euclidean norm $\left\|v_{j}\right\|_{2}=\left(\sum_{k=1}^{D} v_{j}^{2}[k]\right)^{\frac{1}{2}}=1$

- For each x_{i}, it's project coordinates on $\left\{v_{j}\right\}$:

$$
w_{i, j}=v_{j}^{T} * \mathrm{x}_{i}, j=1,2, \ldots, d
$$

- Now x_{i}, a D-dim vector can be represented by a d -dim vector ($\mathrm{d}<\mathrm{D}$)

$$
\left[w_{i, 1}, w_{i, 2}, \ldots, w_{i, d}\right]
$$

Learning Representations

PCA, Kernel PCA, ICA, CCA: Powerful unsupervised learning techniques for extracting hidden (potentially lower dimensional) structure from high dimensional datasets.

Useful for:

- Visualization
- More efficient use of resources
(e.g., time, memory, communication)
- Statistical: fewer dimensions \rightarrow better generalization
- Noise removal (improving data quality)
- Further processing by machine learning algorithms

PCA COMPUTATION

Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions that capture most of the variance in the data.

- First PC - direction of greatest variability in data.
- Projection of data points along first PC discriminates data most along any one direction (pts are the most spread out when we project the data on that direction compared to any other directions).

Quick reminder:

$\|v\|=1$, Point x_{i} (D-dimensional vector)
Projection of x_{i} onto v is $v^{T} \cdot x_{i}$

Principal Component Analysis (PCA)

Principal Components (PC) are orthogonal directions that capture most of the variance in the data.

- $1^{\text {st }}$ PC - direction of greatest variability in data.

- $2^{\text {nd }}$ PC - Next orthogonal (uncorrelated) direction of greatest variability
(remove all variability in first direction, then find next direction of greatest variability)
- And so on ...

Eigenvector and Eigenvalue

$$
\mathbf{A x}=\lambda \mathbf{x}
$$

A: Square Matrix

x: Eigenvector

λ : Eigenvalue

Example
Show $x=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector for $A=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]$
Solution: $A x=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
But for $\lambda=0, \lambda x=0\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Thus, x is an eigenvector of A, and $\lambda=0$ is an eigenvalue.

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

Principal Component Analysis (PCA)

Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}}$ denote the d principal components.
$\mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{j}}=0, \mathrm{i} \neq \mathrm{j}$ and $\mathrm{v}_{\mathrm{i}} \cdot \mathrm{v}_{\mathrm{i}}=1, \mathrm{i}=\mathrm{j}$
Assume data is centered (we extracted the sample mean).

Let $\mathrm{X}=\left[\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right]$ (columns are the datapoints)
Find vector that maximizes sample variance of projected data

$$
\sum_{i=1}^{n}\left(\mathbf{v}^{T} \mathbf{x}_{i}\right)^{2}=\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}
$$

$\max _{\mathbf{v}} \mathbf{v}^{T} \mathbf{X X}^{T} \mathbf{v} \quad$ s.t. $\quad \mathbf{v}^{T} \mathbf{v}=1$
Lagrangian: $\max _{\mathbf{v}} \mathbf{v}^{T} \mathbf{X X} \mathbf{X}^{T} \mathbf{v}-\lambda \mathbf{v}^{T} \mathbf{v}$
Wrap constraints into the objective function

$$
\left.\partial / \partial \mathbf{v}=0 \quad\left(\mathbf{X X}^{T}-\lambda \mathbf{I}\right) \mathbf{v}=0 \quad \Rightarrow \quad \mathbf{X X}^{T}\right) \mathbf{v}=\lambda \mathbf{v}
$$

Principal Component Analysis (PCA)

$\left(X X^{T}\right) v=\lambda v$, so v (the first $P C$) is the eigenvector of sample correlation/covariance matrix $X X^{T}$

Sample variance of projection $\mathrm{v}^{T} X X^{T} \mathrm{v}=\lambda \mathrm{v}^{T} \mathrm{v}=\lambda$
Thus, the eigenvalue λ denotes the amount of variability captured along that dimension (aka amount of
 energy along that dimension).

Eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \cdots$

- The $1^{\text {st }} P C v_{1}$ is the eigenvector of the sample covariance matrix $X X^{T}$ associated with the largest eigenvalue
- The 2nd PC v_{2} is the eigenvector of the sample covariance matrix $X X^{T}$ associated with the second largest eigenvalue
- And so on ...

Two Interpretations

So far: Maximum Variance Subspace. PCA finds vectors v such that projections on to the vectors capture maximum variance in the data

$$
\sum_{i=1}^{n}\left(\mathbf{v}^{T} \mathbf{x}_{i}\right)^{2}=\mathbf{v}^{T} \mathbf{X} \mathbf{X}^{T} \mathbf{v}
$$

Alternative viewpoint: Minimum Reconstruction Error. PCA finds vectors v such that projection on to the vectors yields minimum mean squared error (MSE) reconstruction

$$
\sum_{i=1}^{n}\left\|\mathbf{x}_{i}-\left(\mathbf{v}^{T} \mathbf{x}_{i}\right) \mathbf{v}\right\|^{2}
$$

Dimensionality Reduction using PCA

In high-dimensional problems, data sometimes lies near a linear subspace, as noise introduces small variability
Only keep data projections onto principal components with large eigenvalues

Can ignore the components of smaller significance.

Might lose some info, but if eigenvalues are small, do not lose much

APPLICATION EXAMPLES

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
- 100x100 image = 10,000 dimensions
- Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: $u_{1}, \ldots u_{k}$

slide by Derek Hoiem

Representation and reconstruction

- Face \mathbf{x} in "face space" coordinates:

$$
\begin{aligned}
\mathbf{x} & \rightarrow\left[\mathbf{u}_{1}^{\mathrm{T}}(\mathbf{x}-\mu), \ldots, \mathbf{u}_{k}^{\mathrm{T}}(\mathbf{x}-\mu)\right] \\
& =w_{1}, \ldots, w_{k}
\end{aligned}
$$

- Reconstruction:

slide by Derek Hoiem

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

