Q1.1 On a multiple choice test, problem A has 4 choices, while problem B has 3 . Assume that each problem has 1 correct answer. What is the probability of guessing the correct answer to both of the problems?
A. $\frac{1}{4}+\frac{1}{3}$
B. $\frac{1}{4} \times \frac{1}{3}$
C. $\frac{1}{4} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3}$
D. None of the above

Q1.1 On a multiple choice test, problem A has 4 choices, while problem B has 3 . Assume that each problem has 1 correct answer. What is the probability of guessing the correct answer to both of the problems?
A. $\frac{1}{4}+\frac{1}{3}$
B. $\frac{1}{4} \times \frac{1}{3}$
C. $\frac{1}{4} \times \frac{1}{3}+\frac{1}{3} \times \frac{2}{3}$
D. None of the above

Q1.2 Consider a fair die, and the following three events:
$X=$ rolling any of $\{1,2\}$
$Y=$ rolling any of $\{2,4,6\}$
$Z=$ rolling any of $\{1,4\}$
In other words, $P(X)=1 / 3, P(Y)=1 / 2, P(Z)=1 / 3$.
Are events X and Y independent? Are events X and Y independent given event Z ?
A. Yes, Yes
B. No, No
C. Yes, No
D. No, Yes

Q1.2 Consider a fair die, and the following three events:
$X=$ rolling any of $\{1,2\}$
$Y=$ rolling any of $\{2,4,6\}$
$Z=$ rolling any of $\{1,4\}$
In other words, $P(X)=1 / 3, P(Y)=1 / 2, P(Z)=1 / 3$.
Are events X and Y independent? Are events X and Y independent given event Z ?
A. Yes, Yes
B. No, No
C. Yes, No
D. No, Yes

Q2.1 We have a piece a text:
It was the best of times, it was the worst of times.
Suppose our vocabulary is ["it", "was", "best", "of", "times", "worst"]
What is the bag of words representation of this text?
A. $[2,2,1,2,2,1]$
B. $[2,2,1,2,2,1] / 6$
C. $[2,2,1,2,2,1] / 10$
D. $[1,1,2,1,1,2] / 10$

Q2.1 We have a piece a text:
It was the best of times, it was the worst of times.
Suppose our vocabulary is ["it", "was", "best", "of", "times", "worst"]
What is the bag of words representation of this text?
A. $[2,2,1,2,2,1]$
B. $[2,2,1,2,2,1] / 6$
C. $[2,2,1,2,2,1] / 10$
D. $[1,1,2,1,1,2] / 10$

Q2.2 We have a a corpus containing only the following documents.
Document ID 1: "A time to plant and a time to reap"
Document ID 2: "Time for you and time for me"
Document ID 3: "Time flies"
Given that the stemmed version of the word "flies" is the term "fly", what is the tf-idf of "fly" in document 3 ?
A. $\log (3)$
B. $\log (3) / 3$
C. $\log (2)$
D. $\log (2) / 2$

Q2.2 We have a a corpus containing only the following documents.
Document ID 1: "A time to plant and a time to reap"
Document ID 2: "Time for you and time for me"
Document ID 3: "Time flies"
Given that the stemmed version of the word "flies" is the term "fly", what is the tf-idf of "fly" in document 3 ?
A. $\log (3)$
B. $\log (3) / 3$
C. $\log (2)$
D. $\log (2) / 2$

Q2.3 Given the following two document vectors, what is their cosine similarity?
$\mathrm{v}_{\mathrm{a}}=[0.5,1,2]$
$v_{b}=[2,1,0.5]$
A. 0.571
B. 0.99
C. 1.909
D. -0.99

Q2.3 Given the following two document vectors, what is their cosine similarity?
$\mathrm{v}_{\mathrm{a}}=[0.5,1$, 2]
$v_{b}=[2,1,0.5]$
A. 0.571
B. 0.99
C. 1.909
D. -0.99

Q3.1 Suppose "the dog ran away" is our training corpus.
What is $\mathrm{P}($ ran away) if we use a unigram model?
A. 0
B. $1 / 2$
C. $1 / 4$
D. $1 / 16$

Q3.1 Suppose "the dog ran away" is our training corpus.
What is P(ran away) if we use a unigram model?
A. 0
B. $1 / 2$
C. $1 / 4$
D. $1 / 16$

Q 3.2: Suppose "the dog ran away" is the training corpus. What is $P(r a n \mid d o g)$ if we use a bigram model with Laplace Smoothing?
A. $1 / 4$
B. 1
C. $2 / 5$
D. $1 / 2$

Q 3.2: Suppose "the dog ran away" is the training corpus. What is $P(r a n \mid d o g)$ if we use a bigram model with Laplace Smoothing?
A. $1 / 4$
B. 1
C. $2 / 5$
D. $1 / 2$

