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Reasoning with Uncertainty
• There are two identical-looking envelopes

§ one has a red ball (worth $100) and a black ball
§ one has two black balls.  Black balls worth nothing

• You randomly grabbed an envelope, randomly took 
out one ball – it’s black.

• At this point you’re given the option to switch the 
envelope.  To switch or not to switch?
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Outline
• Probability 

§ random variable
§ Axioms of probability
§ Conditional probability
§ Probabilistic inference: Bayes rule
§ Independence
§ Conditional independence
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Uncertainty
• Randomness

§ Is our world random?

• Uncertainty
§ Ignorance (practical and theoretical)

• Will my coin flip end in head?
• Will bird flu strike tomorrow?

• Probability is the language of uncertainty
§ Central pillar of modern day artificial intelligence
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Sample space
• A space of events that we assign probabilities to
• Events can be binary, multi-valued, or continuous
• Events are mutually exclusive
• Examples

§ Coin flip: {head, tail}
§ Die roll: {1,2,3,4,5,6}
§ English words: a dictionary
§ Temperature tomorrow: R+ (kelvin)
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Random variable
• A variable, x, whose domain is the sample space, 

and whose value is somewhat uncertain
• Examples:

§ x = coin flip outcome
§ x = first word in tomorrow’s headline news
§ x = tomorrow’s temperature 

• Kind of like x = rand() 
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Probability for discrete events
• Probability P(x=a) is the fraction of times x takes 

value a
• Often we write it as P(a)
• There are other definitions of probability, and 

philosophical debates… but we’ll not go there
• Examples

§ P(head)=P(tail)=0.5 fair coin
§ P(head)=0.51, P(tail)=0.49 slightly biased coin
§ P(head)=1, P(tail)=0 Jerry’s coin
§ P(first word = “the” when flipping to a random 

page in R&N)=?
• Demo: http://www.bookofodds.com/
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Probability table
• Weather

• P(Weather = sunny) = P(sunny) = 200/365

• P(Weather) = {200/365, 100/365, 65/365}

• For now we’ll be satisfied with obtaining the 
probabilities by counting frequency from data…

65/365100/365200/365
RainyCloudySunny
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Probability for discrete events
• Probability for more complex events A

§ P(A=“head or tail”)=? fair coin

§ P(A=“even number”)=? fair 6-sided die

§ P(A=“two dice rolls sum to 2”)=?
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Probability for discrete events
• Probability for more complex events A

§ P(A=“head or tail”)=0.5 + 0.5 = 1 fair coin

§ P(A=“even number”)=1/6 + 1/6 + 1/6 = 0.5 fair 6-
sided die

§ P(A=“two dice rolls sum to 2”)=1/6 * 1/6 = 1/36
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
space

The fraction of A can’t
be smaller than 0
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
space

The fraction of A can’t
be bigger than 1
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
spaceValid sentence: e.g. “x=head or x=tail”
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
space

Invalid sentence: 
e.g. “x=head AND x=tail”



slide 16

The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
spaceA

B
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Some theorems derived from the axioms
• P(¬A) = 1 – P(A) picture?

• If A can take k different values a1… ak:
P(A=a1) + … P(A=ak) = 1

• P(B) = P(B Ù¬A) + P(B Ù A), if A is a binary event

• P(B) = Si=1…kP(B Ù A=ai), if A can take k values
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Joint probability
• The joint probability P(A=a, B=b) is a shorthand for 

P(A=a Ù B=b), the probability of both A=a and B=b 
happen

A

P(A=a,B=b), e.g. P(1st =“San”,2nd =“Francisco”)=0.0007

P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001
(possibly: San Francisco, San Diego, …)

(possibly: San Francisco, Don Francisco, Pablo Francisco …)
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Joint probability table

• P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365

• The full joint probability table between N variables, 
each taking k values, has kN entries (that’s a lot!)

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny
weather

temp
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Marginal probability
• Sum over other variables

• The name comes from the old days when the sums 
are written on the margin of a page

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny
weather

temp

S 200/365     100/365      65/365

P(Weather)={200/365, 100/365, 65/365}
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Marginal probability
• Sum over other variables

• This is nothing but P(B) = Si=1…kP(B Ù A=ai), if A can 
take k values

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny
weather

temp

P(temp)={195/365, 170/365}

S
195/365 
170/365
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Conditional probability
• The conditional probability P(A=a | B=b) is the 

fraction of times A=a, within the region that B=b

A
P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001

P(A=a | B=b), e.g. P(1st=“San” | 2nd =“Francisco”)=0.875

Although “San” is rare and “Francisco” is rare, 
given “Francisco” then “San” is quite likely!

(possibly: San, Don, Pablo …)
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Conditional probability
• P(San | Francisco) 

= #(1st=S and 2nd=F) / #(2nd=F)
= P(San Ù Francisco) / P(Francisco)
= 0.0007 / 0.0008
= 0.875

P(S)=0.001
P(F)=0.0008
P(S,F)=0.0007

A
P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a | B=b), e.g. P(1st=“San” | 2nd =“Francisco”)=0.875
(possibly: San, Don, Pablo …)
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Conditional probability
• In general, the conditional probability is 

• We can have everything conditioned on some other 
events C, to get a conditional version of conditional 
probability

‘|’ has low precedence.  
This should read P(A | (B,C))  

å =
=

=
=

==

ia
i BaAP
BaAP

BP
BaAPBaAP

 all
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CBP
CBAPCBAP =



slide 25

The chain rule
• From the definition of conditional probability we have the 

chain rule
P(A, B) = P(B) * P(A | B)

• It works the other way around
P(A, B) = P(A) * P(B | A)

• It works with more than 2 events too
P(A1, A2, …, An) = 
P(A1) * P(A2 | A1) * P(A3| A1, A2) * … * P(An | A1,A2…An-1)
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Reasoning
How do we use probabilities in AI?
• You wake up with a headache (D’oh!).  
• Do you have the flu? 
• H = headache, F = flu

Logical Inference: if (H) then F. (but the world is often not this 
clear cut)

Statistical Inference: compute the probability of a query given 
(conditioned on) evidence, i.e. P(F|H)

[Example from Andrew Moore]
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Inference with Bayes’ rule: Example 1
Inference: compute the probability of a query given evidence
(H = headache, F = flu)

You know that
• P(H) = 0.1 “one in ten people has headache”
• P(F) = 0.01 “one in 100 people has flu”
• P(H|F) = 0.9 “90% of people who have flu have headache”

• How likely do you have the flu? 
§ 0.9?
§ 0.01?
§ …?

[Example from Andrew Moore]
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Inference with Bayes’ rule

• P(H) = 0.1 “one in ten people has headache”
• P(F) = 0.01     “one in 100 people has flu”
• P(H|F) = 0.9   “90% of people who have flu have 

headache”

• P(F|H) = 0.9 * 0.01 / 0.1 = 0.09
• So there’s a 9% chance you have flu – much less 

than 90%
• But it’s higher than P(F)=1%, since you have the 

headache

Bayes rule Essay Towards Solving a Problem 
in the Doctrine of Chances (1764)

)(
)()|(

)(
),()|(

HP
FPFHP

HP
HFPHFp ==
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Inference with Bayes’ rule
• P(A|B) = P(B|A)P(A) / P(B) Bayes’ rule
• Why do we make things this complicated?

§ Often P(B|A), P(A), P(B) are easier to get
§ Some names:

• Prior P(A): probability before any evidence
• Likelihood P(B|A): assuming A, how likely is the evidence
• Posterior P(A|B): conditional prob. after knowing evidence
• Inference: deriving unknown probability from known ones

• In general, if we have the full joint probability table, we 
can simply do P(A|B)=P(A, B) / P(B) – more on this 
later…
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Inference with Bayes’ rule: Example 2
• In a bag there are two envelopes

§ one has a red ball (worth $100) and a black ball
§ one has two black balls.  Black balls worth nothing

• You randomly grabbed an envelope, randomly took 
out one ball – it’s black.

• At this point you’re given the option to switch the 
envelope.  To switch or not to switch?
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Inference with Bayes’ rule: Example 2
• E: envelope, 1=(R,B), 2=(B,B)
• B: the event of drawing a black ball
• P(E|B) = P(B|E)*P(E) / P(B)
• We want to compare P(E=1|B) vs. P(E=2|B)
• P(B|E=1) = 0.5, P(B|E=2) = 1
• P(E=1)=P(E=2)=0.5
• P(B)=3/4 (it in fact doesn’t matter for the comparison)
• P(E=1|B)=1/3, P(E=2|B)=2/3
• After seeing a black ball, the posterior probability of 

this envelope being 1 (thus worth $100) is smaller 
than it being 2

• Thus you should switch
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Independence
• Two events A, B are independent, if (the following are 

equivalent)
§ P(A, B) = P(A) * P(B)
§ P(A | B) = P(A)
§ P(B | A) = P(B)

• For a 4-sided die, let
§ A=outcome is small
§ B=outcome is even
§ Are A and B independent?

• How about a 6-sided die?
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Independence
• Independence is a domain knowledge
• If A, B are independent, the joint probability table 

between A, B is simple: 
§ it has k2 cells, but only 2k-2 parameters.  This is 

good news – more on this later…
• Example: P(burglary)=0.001, P(earthquake)=0.002. 

Let’s say they are independent.  The full joint 
probability table=?
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Independence misused
A famous statistician would never travel by airplane, because he had studied 
air travel and estimated that the probability of there being a bomb on any given 
flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you 
get here, by train?"

"No, I flew"

"What about the possibility of a bomb?"

"Well, I began thinking that if the odds of one bomb are 1:million, then the 
odds of two bombs are (1/1,000,000) x (1/1,000,000). This is a very, very 
small probability, which I can accept. So now I bring my own bomb along!"

An innocent old math joke
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Conditional independence
• Random variables can be dependent, but 

conditionally independent
• Your house has an alarm

§ Neighbor John will call when he hears the alarm
§ Neighbor Mary will call when she hears the alarm
§ Assume John and Mary don’t talk to each other

• JohnCall independent of MaryCall?  
§ No – If John called, likely the alarm went off, which 

increases the probability of Mary calling
§ P(MaryCall | JohnCall) ¹ P(MaryCall)
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Conditional independence
• If we know the status of the alarm, JohnCall won’t 

affect Mary at all
P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)
• We say JohnCall and MaryCall are conditionally 

independent, given Alarm
• In general A, B are conditionally independent given C

§ if P(A | B, C) = P(A | C), or
§ P(B | A, C) = P(B | C), or
§ P(A, B | C) = P(A | C) * P(B | C)


