CS 540 Introduction to Al Basic Probability and Statistics

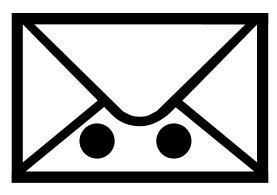
Daifeng Wang

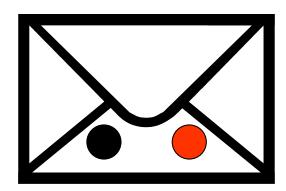
daifeng.wang@wisc.edu
University of Wisconsin, Madison

Based on slides from Xiaojin Zhu (<u>http://pages.cs.wisc.edu/~jerryzhu/cs540.html</u>), modified by Daifeng Wang

Reasoning with Uncertainty

- There are two identical-looking envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls worth nothing





- You randomly grabbed an envelope, randomly took out one ball – it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Outline

Probability

- random variable
- Axioms of probability
- Conditional probability
- Probabilistic inference: Bayes rule
- Independence
- Conditional independence

Uncertainty

- Randomness
 - Is our world random?
- Uncertainty
 - Ignorance (practical and theoretical)
 - Will my coin flip end in head?
 - Will bird flu strike tomorrow?
- Probability is the language of uncertainty
 - Central pillar of modern day artificial intelligence

Sample space

- A space of events that we assign probabilities to
- Events can be binary, multi-valued, or continuous
- Events are mutually exclusive
- Examples
 - Coin flip: {head, tail}
 - Die roll: {1,2,3,4,5,6}
 - English words: a dictionary
 - Temperature tomorrow: R₊ (kelvin)

Random variable

- A variable, x, whose domain is the sample space, and whose value is somewhat uncertain
- Examples:
 - x = coin flip outcome
 - x = first word in tomorrow's headline news
 - x = tomorrow's temperature
- Kind of like x = rand()

Probability for discrete events

- Probability P(x=a) is the fraction of times x takes value a
- Often we write it as P(a)
- There are other definitions of probability, and philosophical debates... but we'll not go there
- Examples
 - P(head)=P(tail)=0.5 fair coin
 - P(head)=0.51, P(tail)=0.49 slightly biased coin
 - P(head)=1, P(tail)=0 Jerry's coin
 - P(first word = "the" when flipping to a random page in R&N)=?
- Demo: http://www.bookofodds.com/

Probability table

• Weather

Sunny	Cloudy	Rainy
200/365	100/365	65/365

- P(Weather = sunny) = P(sunny) = 200/365
- P(Weather) = {200/365, 100/365, 65/365}
- For now we'll be satisfied with obtaining the probabilities by counting frequency from data...

Probability for discrete events

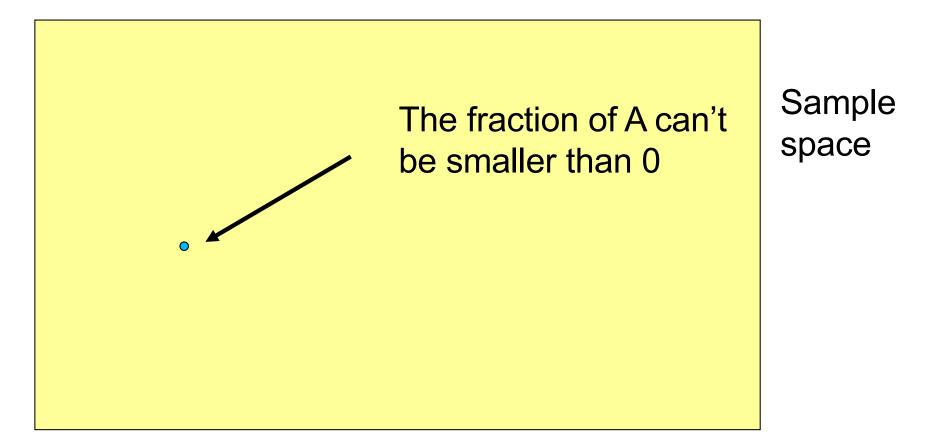
- Probability for more complex events A
 - P(A="head or tail")=? fair coin
 - P(A="even number")=? fair 6-sided die
 - P(A="two dice rolls sum to 2")=?

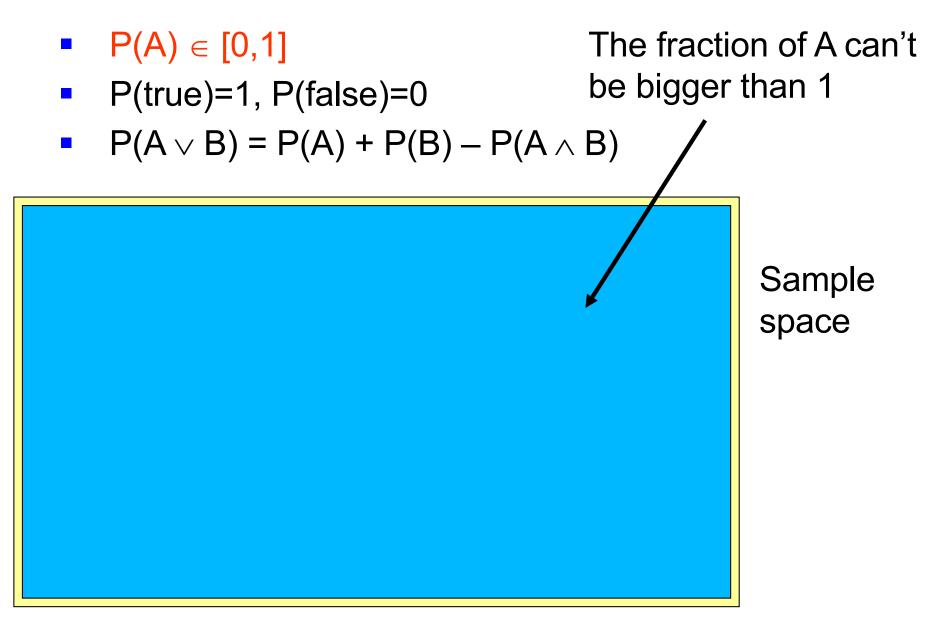
Probability for discrete events

- Probability for more complex events A
 - P(A="head or tail")=0.5 + 0.5 = 1 fair coin
 - P(A="even number")=1/6 + 1/6 + 1/6 = 0.5 fair 6sided die
 - P(A="two dice rolls sum to 2")=1/6 * 1/6 = 1/36

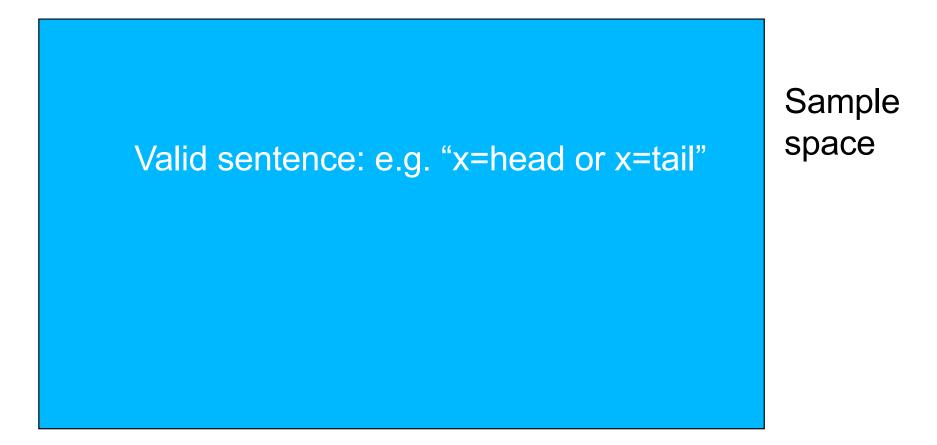
- P(A) ∈ [0,1]
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

- P(A) ∈ [0,1]
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$

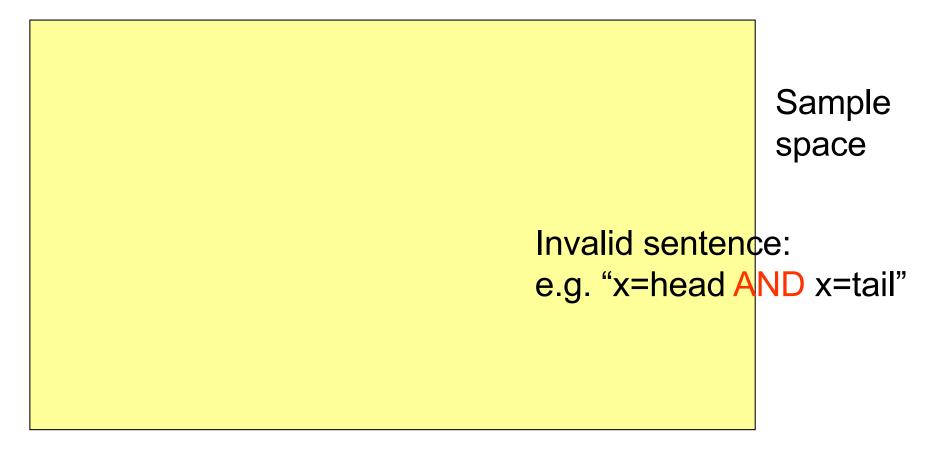




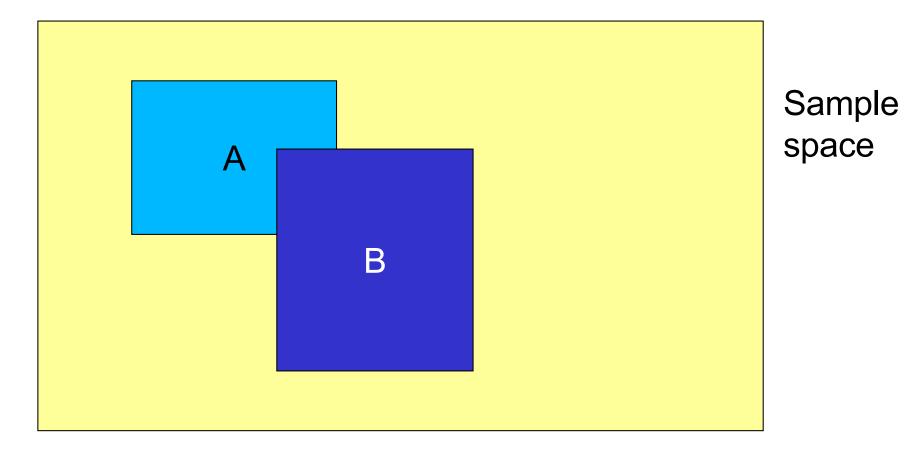
- P(A) ∈ [0,1]
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



- P(A) ∈ [0,1]
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



- P(A) ∈ [0,1]
- P(true)=1, P(false)=0
- $P(A \lor B) = P(A) + P(B) P(A \land B)$



Some theorems derived from the axioms

- $P(\neg A) = 1 P(A)$ picture?
- If A can take k different values $a_1...a_k$: P(A= a_1) + ... P(A= a_k) = 1
- $P(B) = P(B \land \neg A) + P(B \land A)$, if A is a binary event
- $P(B) = \sum_{i=1...k} P(B \land A=a_i)$, if A can take k values

Joint probability

 The joint probability P(A=a, B=b) is a shorthand for P(A=a ∧ B=b), the probability of both A=a and B=b happen

P(A=a), e.g. P(1st word on a random page = "San") = 0.001 (possibly: San Francisco, San Diego, ...)

P(B=b), e.g. $P(2^{nd} word = "Francisco") = 0.0008$

(possibly: San Francisco, Don Francisco, Pablo Francisco ...)

P(A=a,B=b), e.g. P(1st ="San",2nd ="Francisco")=0.0007

Joint probability table

weather

		Sunny	Cloudy	Rainy
temp	hot	150/365	40/365	5/365
	cold	50/365	60/365	60/365

- P(temp=hot, weather=rainy) = P(hot, rainy) = 5/365
- The full joint probability table between N variables, each taking k values, has k^N entries (that's a lot!)

Marginal probability

Sum over other variables

weather

		Sunny	Cloudy	Rainy
temp	hot	150/365	40/365	5/365
	cold	50/365	60/365	60/365
	Σ	200/365	100/365	65/365

P(Weather)={200/365, 100/365, 65/365}

 The name comes from the old days when the sums are written on the margin of a page

Marginal probability

Sum over other variables

weather

		Sunny	Cloudy	Rainy	Σ
temp	hot	150/365	40/365	5/365	195/365
	cold	50/365	60/365	60/365	170/365

P(temp)={195/365, 170/365}

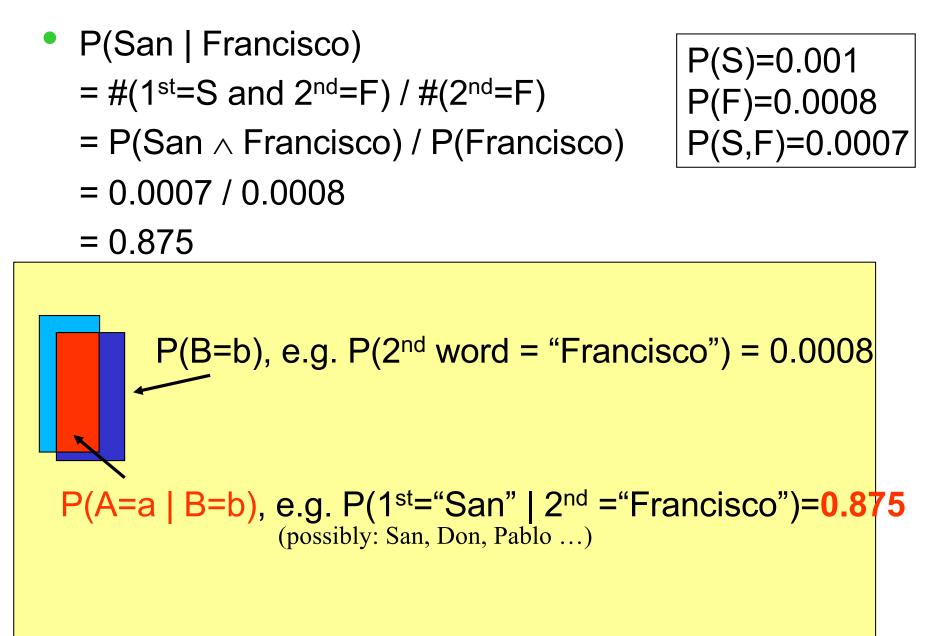
• This is nothing but $P(B) = \sum_{i=1...k} P(B \land A=a_i)$, if A can take *k* values

Conditional probability

 The conditional probability P(A=a | B=b) is the fraction of times A=a, within the region that B=b

P(A=a), e.g. $P(1^{st} word on a random page = "San") = 0.001$ P(B=b), e.g. $P(2^{nd} word = "Francisco") = 0.0008$ P(A=a | B=b), e.g. P(1st="San" | 2nd ="Francisco")=0.875 (possibly: San, Don, Pablo ...) Although "San" is rare and "Francisco" is rare, given "Francisco" then "San" is quite likely!

Conditional probability



slide 23

Conditional probability

In general, the conditional probability is

$$P(A = a \mid B) = \frac{P(A = a, B)}{P(B)} = \frac{P(A = a, B)}{\sum_{\text{all } a_i} P(A = a_i, B)}$$

 We can have everything conditioned on some other events C, to get a conditional version of conditional probability

$$P(A \mid B, C) = \frac{P(A, B \mid C)}{P(B \mid C)}$$

'|' has low precedence.
This should read P(A | (B,C))

The chain rule

 From the definition of conditional probability we have the chain rule

P(A, B) = P(B) * P(A | B)

It works the other way around

P(A, B) = P(A) * P(B | A)

It works with more than 2 events too

 $P(A_1, A_2, ..., A_n) =$

 $\mathsf{P}(\mathsf{A}_1) * \mathsf{P}(\mathsf{A}_2 \mid \mathsf{A}_1) * \mathsf{P}(\mathsf{A}_3 \mid \mathsf{A}_1, \mathsf{A}_2) * \dots * \mathsf{P}(\mathsf{A}_n \mid \mathsf{A}_1, \mathsf{A}_2 \dots \mathsf{A}_{n-1})$

Reasoning

How do we use probabilities in AI?

- You wake up with a headache (D'oh!).
- Do you have the flu?
- H = headache, F = flu

Logical Inference: if (H) then F. (but the world is often not this clear cut)

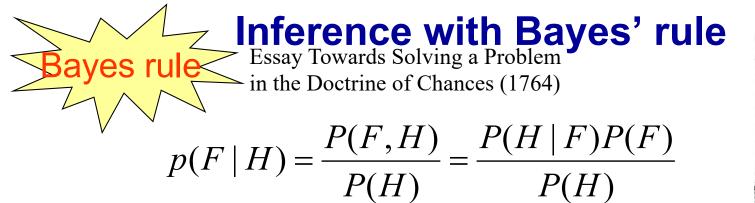
Statistical Inference: compute the probability of a query given (conditioned on) evidence, i.e. P(F|H)

Inference with Bayes' rule: Example 1

Inference: compute the probability of a query given evidence (H = headache, F = flu)

You know that

- P(H) = 0.1 "one in ten people has headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H|F) = 0.9 "90% of people who have flu have headache"
- How likely do you have the flu?
 - 0.9?
 - 0.01?
 - ...?



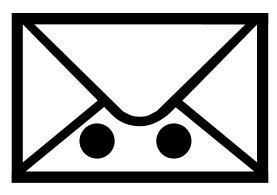
- P(H) = 0.1 "one in ten people has headache"
- P(F) = 0.01 "one in 100 people has flu"
- P(H|F) = 0.9 "90% of people who have flu have headache"
- P(F|H) = 0.9 * 0.01 / 0.1 = 0.09
- So there's a 9% chance you have flu much less than 90%
- But it's higher than P(F)=1%, since you have the headache

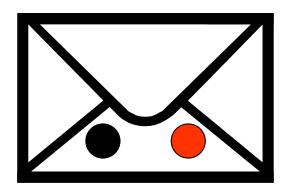
Inference with Bayes' rule

- P(A|B) = P(B|A)P(A) / P(B) Bayes' rule
- Why do we make things this complicated?
 - Often P(B|A), P(A), P(B) are easier to get
 - Some names:
 - **Prior P(A)**: probability before any evidence
 - Likelihood P(B|A): assuming A, how likely is the evidence
 - **Posterior P(A|B)**: conditional prob. after knowing evidence
 - Inference: deriving unknown probability from known ones
- In general, if we have the full joint probability table, we can simply do P(A|B)=P(A, B) / P(B) – more on this later...

Inference with Bayes' rule: Example 2

- In a bag there are two envelopes
 - one has a red ball (worth \$100) and a black ball
 - one has two black balls. Black balls worth nothing





- You randomly grabbed an envelope, randomly took out one ball – it's black.
- At this point you're given the option to switch the envelope. To switch or not to switch?

Inference with Bayes' rule: Example 2

- E: envelope, 1=(R,B), 2=(B,B)
- B: the event of drawing a black ball
- P(E|B) = P(B|E)*P(E) / P(B)
- We want to compare P(E=1|B) vs. P(E=2|B)
- P(B|E=1) = 0.5, P(B|E=2) = 1
- P(E=1)=P(E=2)=0.5
- P(B)=3/4 (it in fact doesn't matter for the comparison)
- P(E=1|B)=1/3, P(E=2|B)=2/3
- After seeing a black ball, the posterior probability of this envelope being 1 (thus worth \$100) is smaller than it being 2
- Thus you should switch

Independence

- Two events A, B are independent, if (the following are equivalent)
 - P(A, B) = P(A) * P(B)
 - P(A | B) = P(A)
 - P(B | A) = P(B)
- For a 4-sided die, let
 - A=outcome is small
 - B=outcome is even
 - Are A and B independent?
- How about a 6-sided die?

Independence

- Independence is a domain knowledge
- If A, B are independent, the joint probability table between A, B is simple:
 - it has k² cells, but only 2k-2 parameters. This is good news – more on this later...
- Example: P(burglary)=0.001, P(earthquake)=0.002. Let's say they are independent. The full joint probability table=?

Independence misused

A famous statistician would never travel by airplane, because he had studied air travel and estimated that the probability of there being a bomb on any given flight was one in a million, and he was not prepared to accept these odds.

One day, a colleague met him at a conference far from home. "How did you get here, by train?"

"No, I flew"

"What about the possibility of a bomb?"

"Well, I began thinking that if the odds of one bomb are 1:million, then the odds of two bombs are $(1/1,000,000) \times (1/1,000,000)$. This is a very, very small probability, which I can accept. So now I bring my own bomb along!"

An innocent old math joke

Conditional independence

- Random variables can be dependent, but conditionally independent
- Your house has an alarm
 - Neighbor John will call when he hears the alarm
 - Neighbor Mary will call when she hears the alarm
 - Assume John and Mary don't talk to each other
- JohnCall independent of MaryCall?
 - No If John called, likely the alarm went off, which increases the probability of Mary calling
 - $P(MaryCall | JohnCall) \neq P(MaryCall)$

Conditional independence

- If we know the status of the alarm, JohnCall won't affect Mary at all
 P(MaryCall | Alarm, JohnCall) = P(MaryCall | Alarm)
- We say JohnCall and MaryCall are conditionally independent, given Alarm
- In general A, B are conditionally independent given C
 - if P(A | B, C) = P(A | C), or
 - P(B | A, C) = P(B | C), or
 - P(A, B | C) = P(A | C) * P(B | C)