
slide 1

Outline
• Natural Language Processing

§ Preprocessing
§ Statistics
§ Language models

slide 2

Preprocess

• Tokenization or text normalization: turn data into sequence(s) of
tokens

1. Remove unwanted stuff: HTML tags, encoding tags
2. Determine word boundaries: usually white space and punctuations

§ Sometimes can be tricky, like Ph.D.
3. Remove stopwords: the, of, a, with, …
4. Case folding: lower-case all characters.

§ Sometimes can be tricky, like US and us
5. Stemming/Lemmatization (optional): looks, looked, looking à look

slide 3

Vocabulary
Given the preprocessed text
• Word token: occurrences of a word
• Word type: unique word as a dictionary entry (i.e.,

unique tokens)

• Vocabulary: the set of word types
§ Often 10k to 1 million on different corpora
§ Often remove too rare words

slide 4

Zipf’s Law
• Word count 𝑓, word rank 𝑟
• Zipf’s law: 𝑓 ∗ 𝑟 ≈ constant

Zipf’s law on the corpus Tom Sawyer

slide 5

Bag-of-Words
How to represent a piece of text (sentence/document)
as numbers?

• Let 𝑚 denote the size of the vocabulary
• Given a document 𝑑, let 𝑐(𝑤, 𝑑) denote the

#occurrence of 𝑤 in 𝑑
• Bag-of-Words representation of the document

𝑣! = 𝑐 𝑤", 𝑑 , 𝑐 𝑤#, 𝑑 , … , 𝑐 𝑤$, 𝑑 /𝑍!
• Often 𝑍! = ∑% 𝑐(𝑤, 𝑑)

slide 6

tf-idf

• tf: normalized term frequency

𝑡𝑓! =
𝑐(𝑤, 𝑑)

max
"
𝑐(𝑣, 𝑑)

• idf: inverse document frequency

𝑖𝑑𝑓! = log
total #doucments

#documents containing 𝑤
• tf-idf: 𝑡𝑓-𝑖𝑑𝑓! = 𝑡𝑓! ∗ 𝑖𝑑𝑓!
• Representation of the document

𝑣# = [𝑡𝑓−𝑖𝑑𝑓!! , 𝑡𝑓−𝑖𝑑𝑓!" , … , 𝑡𝑓−𝑖𝑑𝑓!#]

slide 7

Cosine Similarity
How to measure similarities between pieces of text?

• Given the document vectors, can use any similarity
notion on vectors
• Commonly used in NLP: cosine of the angle between

the two vectors

𝑠𝑖𝑚 𝑥, 𝑦 =
𝑥&𝑦

𝑥&𝑥 𝑦&𝑦

slide 8

Statistical language model
• Language model: probability distribution over

sequences of tokens
• Typically, tokens are words, and distribution is

discrete

• Tokens can also be characters or even bytes

• Sentence: “the quick brown fox jumps over the lazy
dog”

𝑥! 𝑥" 𝑥# 𝑥$ 𝑥% 𝑥& 𝑥' 𝑥(𝑥)Tokens:

• Probabilistic model:

P [𝑥!, 𝑥", 𝑥#, … , 𝑥*+!, 𝑥*]

slide 9

Unigram model
• Unigram model: define the probability of the

sequence as the product of the probabilities of the
tokens in the sequence

P 𝑥!, 𝑥", … , 𝑥* =(
,-!

*

P[𝑥,]

Independence!

• Sentence: “the dog ran away”

• How to estimate on the training corpus?
)P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 =)P 𝑡ℎ𝑒)P 𝑑𝑜𝑔)P 𝑟𝑎𝑛)P[𝑎𝑤𝑎𝑦]

<P 𝑡ℎ𝑒

slide 10

n-gram model
• 𝑛-gram: sequence of 𝑛 tokens

• 𝑛-gram model: define the conditional probability of
the 𝑛-th token given the preceding 𝑛 − 1 tokens

P 𝑥!, 𝑥", … , 𝑥* = P 𝑥!, … , 𝑥.+! (
,-.

*

P[𝑥,|𝑥,+./!, … , 𝑥,+!]

Markovian assumptions

• 𝑛 = 1: unigram
• 𝑛 = 2: bigram
• 𝑛 = 3: trigram

slide 11

Training 𝑛-gram model
• Straightforward counting: counting the co-occurrence

of the grams

For all grams (𝑥'()*", … , 𝑥'(", 𝑥')
1.count and estimate <P[𝑥'()*", … , 𝑥'(", 𝑥']
2.count and estimate <P 𝑥'()*", … , 𝑥'("
3.compute

)P 𝑥, 𝑥,+./!, … , 𝑥,+! =
)P 𝑥,+./!, … , 𝑥,+!, 𝑥,
)P 𝑥,+./!, … , 𝑥,+!

)P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 =)P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛
)P[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]

)P[𝑑𝑜𝑔 𝑟𝑎𝑛]

• Sentence: “the dog ran away” by trigram (n=3)

)P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 =)P 𝑡ℎ𝑒 𝑑𝑜𝑔 𝑟𝑎𝑛)P[𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛]

slide 12

Rectify: smoothing
• Sparsity issue: <P … most likely to be 0

• Basic method: adding non-zero probability mass to
zero entries

• Example: Laplace smoothing that adds one count to
all 𝑛-grams

pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦] = actualcount
𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦 + 1
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛] ≈ actualcount 𝑑𝑜𝑔 𝑟𝑎𝑛 + |𝑉|

)P 𝑎𝑤𝑎𝑦|𝑑𝑜𝑔 𝑟𝑎𝑛 =
pseudocount[𝑑𝑜𝑔 𝑟𝑎𝑛 𝑎𝑤𝑎𝑦]
pseudocount [𝑑𝑜𝑔 𝑟𝑎𝑛]

trigram

Since number of bigrams "dog ran" ≈ Number of trigrams
containing "dog ran"

