Outline

- Natural Language Processing
 - Preprocessing
 - Statistics
 - Language models

Preprocess

- Tokenization or text normalization: turn data into sequence(s) of tokens
- 1. Remove unwanted stuff: HTML tags, encoding tags
- 2. Determine word boundaries: usually white space and punctuations
 - Sometimes can be tricky, like Ph.D.
- **3.** Remove stopwords: the, of, a, with, ...
- **4.** Case folding: lower-case all characters.
 - Sometimes can be tricky, like US and us
- 5. Stemming/Lemmatization (optional): looks, looked, looking \rightarrow look

Vocabulary

Given the preprocessed text

- Word token: occurrences of a word
- Word type: unique word as a dictionary entry (i.e., unique tokens)
- Vocabulary: the set of word types
 - Often 10k to 1 million on different corpora
 - Often remove too rare words

Zipf's Law

Word count f, word rank r

• Zipf's law: $f * r \approx \text{constant}$

Word	Count f	rank \boldsymbol{r}	fr
the	3332	1	3332
and	2972	2	5944
a	1775	3	5235
he	877	10	8770
\mathbf{but}	410	20	8400
be	294	30	8820
there	222	40	8880
one	172	50	8600
two	104	100	10400
turned	51	200	10200
comes	16	500	8000
family	8	1000	8000
brushed	4	2000	8000
Could	2	4000	8000
Applausive	1	8000	8000

Zipf's law on the corpus *Tom Sawyer*

Bag-of-Words

How to represent a piece of text (sentence/document) as numbers?

- Let *m* denote the size of the vocabulary
- Given a document d, let c(w, d) denote the #occurrence of w in d
- Bag-of-Words representation of the document $v_d = [c(w_1, d), c(w_2, d), ..., c(w_m, d)]/Z_d$
- Often $Z_d = \sum_w c(w, d)$

tf-idf

• tf: normalized term frequency

$$tf_w = \frac{c(w,d)}{\max_v c(v,d)}$$

- idf: inverse document frequency $idf_w = \log \frac{\text{total #doucments}}{\text{#documents containing } w}$
- tf-idf: tf- $idf_w = tf_w * idf_w$
- Representation of the document

$$v_d = [tf - idf_{W_1}, tf - idf_{W_2}, \dots, tf - idf_{W_m}]$$

Cosine Similarity

How to measure similarities between pieces of text?

- Given the document vectors, can use any similarity notion on vectors
- Commonly used in NLP: cosine of the angle between the two vectors

$$sim(x, y) = \frac{x^{\top} y}{\sqrt{x^{\top} x} \sqrt{y^{\top} y}}$$

Statistical language model

- Language model: probability distribution over sequences of tokens
- Typically, tokens are words, and distribution is discrete
- Tokens can also be characters or even bytes
- Sentence: "the quick brown fox jumps over the lazy dog"

Tokens: x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9

• Probabilistic model:

P [$x_1, x_2, x_3, ..., x_{\tau-1}, x_{\tau}$]

Unigram model

 Unigram model: define the probability of the sequence as the product of the probabilities of the tokens in the sequence

$$P[x_1, x_2, ..., x_{\tau}] = \prod_{t=1}^{\tau} P[x_t]$$
 Independence!

- Sentence: "the dog ran away"

 P[the dog ran away] = P[the] P[dog] P[ran] P[away]
- How to estimate $\hat{P}[the]$ on the training corpus?

Word	Count f
the	3332
and	2972
a	1775
\mathbf{he}	877
\mathbf{but}	410
be	294
there	222
one	172

n-gram model

- n-gram: sequence of n tokens
- n-gram model: define the conditional probability of the n-th token given the preceding n - 1 tokens

$$P[x_1, x_2, \dots, x_{\tau}] = P[x_1, \dots, x_{n-1}] \prod_{t=n}^{\tau} P[x_t | x_{t-n+1}, \dots, x_{t-1}]$$

Markovian assumptions

- n = 1: unigram
- n = 2: bigram
- n = 3: trigram

Training *n***-gram model**

 Straightforward counting: counting the co-occurrence of the grams

For all grams $(x_{t-n+1}, ..., x_{t-1}, x_t)$ 1. count and estimate $\widehat{P}[x_{t-n+1}, ..., x_{t-1}, x_t]$ 2. count and estimate $\widehat{P}[x_{t-n+1}, ..., x_{t-1}]$ 3. compute $\widehat{P}[x_t | x_{t-n+1}, ..., x_{t-1}] = \frac{\widehat{P}[x_{t-n+1}, ..., x_{t-1}, x_t]}{\widehat{P}[x_t | x_{t-1}, ..., x_{t-1}]}$

Sentence: "the dog ran away" by trigram (n=3)

 $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \ \hat{P}[away|dog \ ran]$ $\hat{P}[the \ dog \ ran \ away] = \hat{P}[the \ dog \ ran] \frac{\hat{P}[dog \ ran \ away]}{\hat{P}[dog \ ran]}$

slide 11

Rectify: smoothing

- Sparsity issue: $\widehat{P}[...]$ most likely to be 0
- Basic method: adding non-zero probability mass to zero entries
- Example: Laplace smoothing that adds one count to all *n*-grams
 pseudocount[dog ran away] = actualcount
 [dog ran away] + 1
 pseudocount[dog ran] ≈ actualcount[dog ran] + |V|
 P[away|dog ran] = pseudocount[dog ran away] pseudocount[dog ran] ≈ actualcount[dog ran]
 Since number of bigrams "dog ran" ≈ Number of trigrams containing "dog ran"