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Outline
• Probability and inference 

§ Axioms of probability
§ Joint, Marginal, Conditional probability
§ Bayes rule
§ Independence, Conditional independence
§ Expected value
§ Maximum Likelihood Estimation (MLE)
§ Maximum a posteriori (MAP) estimation
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Sample space
• A space of events that we assign probabilities to
• Events can be binary, multi-valued, or continuous
• Events are mutually exclusive

• A variable, x, whose domain is the sample space, 
and whose value is somewhat uncertain

Random variable

Probability for discrete events
• Probability P(x=a) or P(a) is the fraction of times x

takes value a
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Probability table
• Weather

• P(Weather = sunny) = P(sunny) = 200/365

• P(Weather) = {200/365, 100/365, 65/365}

• For now we’ll be satisfied with obtaining the 
probabilities by counting frequency from data…

65/365100/365200/365
RainyCloudySunny
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The axioms of probability
§ P(A) Î [0,1]
§ P(true)=1, P(false)=0
§ P(A Ú B) = P(A) + P(B) – P(A Ù B)

Sample
spaceA

B
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Some theorems derived from the axioms
• P(¬A) = 1 – P(A) picture?

• If A can take k different values a1… ak:
P(A=a1) + … P(A=ak) = 1

• P(B) = P(B Ù¬A) + P(B Ù A), if A is a binary event

• P(B) = Si=1…kP(B Ù A=ai), if A can take k values
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Joint probability
• The joint probability P(A=a, B=b) is a shorthand for 

P(A=a Ù B=b), the probability of both A=a and B=b 
happen

A

P(A=a,B=b), e.g. P(1st =“San”,2nd =“Francisco”)=0.0007

P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001
(possibly: San Francisco, San Diego, …)

(possibly: San Francisco, Don Francisco, Pablo Francisco …)
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Marginal probability
• Sum over other variables

• The name comes from the old days when the sums 
are written on the margin of a page

cold
hot 5/36540/365150/365

60/36560/36550/365

RainyCloudySunny
weather

temp

S 200/365     100/365      65/365

P(Weather)={200/365, 100/365, 65/365}
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Conditional probability
• The conditional probability P(A=a | B=b) is the 

fraction of times A=a, within the region that B=b

A
P(B=b), e.g. P(2nd word = “Francisco”) = 0.0008

P(A=a), e.g. P(1st word on a random page = “San”) = 0.001

P(A=a | B=b), e.g. P(1st=“San” | 2nd =“Francisco”)=0.875

Although “San” is rare and “Francisco” is rare, 
given “Francisco” then “San” is quite likely!

(possibly: San, Don, Pablo …)
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The chain rule
• From the definition of conditional probability we have the 

chain rule
P(A, B) = P(B) * P(A | B)

• It works the other way around
P(A, B) = P(A) * P(B | A)

• It works with more than 2 events too
P(A1, A2, …, An) = 
P(A1) * P(A2 | A1) * P(A3| A1, A2) * … * P(An | A1,A2…An-1)
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Inference with Bayes’ rule
• P(A|B) = P(B|A)P(A) / P(B) Bayes’ rule
• Why do we make things this complicated?

§ Often P(B|A), P(A), P(B) are easier to get
§ Some names:

• Prior P(A): probability before any evidence
• Likelihood P(B|A): assuming A, how likely is the evidence
• Posterior P(A|B): conditional prob. after knowing evidence
• Inference: deriving unknown probability from known ones

• In general, if we have the full joint probability table, we 
can simply do P(A|B)=P(A, B) / P(B) – more on this 
later…
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Independence
• Two events A, B are independent, if (the following are 

equivalent)
§ P(A, B) = P(A) * P(B)
§ P(A | B) = P(A)
§ P(B | A) = P(B)

• In general A, B are conditionally independent given C
§ if P(A | B, C) = P(A | C), or
§ P(B | A, C) = P(B | C), or
§ P(A, B | C) = P(A | C) * P(B | C)

Conditional independence
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Expected values

• The expected value of a random variable that takes 
on numerical values is defined as:

This is the same thing as the mean

• We can also talk about the expected value of a 
function of a random variable
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Maximum Likelihood Estimation (MLE)
Find optimal 𝜃* to maximize the likelihood 
given the data 

𝜃!"#∗ = 𝑎𝑟𝑔𝑚𝑎𝑥%𝑃(𝐷|𝜃)
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Bayes rule

Posterior 
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Play outside or not?
• If weather is sunny, would you like to play outside?
Posterior probability P(Yes|Sunny) vs P(No|Sunny)

• Weather = {Sunny, Rainy, Overcast}
• Play = {Yes, No}
• Observed data {Weather, Play on Day m}, 

m=1,2,…,N
How can we calculate posterior probabilities?

𝑃 𝑃𝑙𝑎𝑦 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 =
𝑃 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑃𝑙𝑎𝑦 𝑃(𝑃𝑙𝑎𝑦)

𝑃(𝑊𝑒𝑎𝑡ℎ𝑒𝑟)

Bayes rule
15
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• Step 1: Convert the data 
to a frequency table of 
Weather and Play

Play outside or not?

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

• Step 2: Based on the 
frequency table, 
calculate likelihoods 
𝑃 𝑊𝑒𝑎𝑡ℎ𝑒𝑟 𝑃𝑙𝑎𝑦 and 
priors 𝑃(𝑃𝑙𝑎𝑦)

𝑒. 𝑔. , 𝑃 𝑃𝑙𝑎𝑦 = 𝑌𝑒𝑠 =
9
14 = 0.64

𝑃 𝑆𝑢𝑛𝑛𝑦 𝑌𝑒𝑠 = !
"
= 0.33
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Play outside or not?

• Step 3: Based on the likelihoods and priors, calculate posteriors 
𝑃(Play│Weather)

• P(No|Sunny)
=P(Sunny|No)*P(No)/P(Sunny)
=0.4*0.36/0.36
=0.4

• P(Yes|Sunny)>P(No|Sunny), you should go outside and play!
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• P(Yes|Sunny)
=P(Sunny|Yes)*P(Yes)/P(Sunny)
=0.33*0.64/0.36
=0.6


